Median trajectories using well-visited regions and shortest paths

For a set of "similar" trajectories, a median trajectory is a trajectory that is most like the trajectories in the set, but it need not be a trajectory from the set itself. A recent method composed a median from parts of the set of trajectories, using ideas from homotopy to decide which parts to use. That method has two drawbacks. Firstly, it requires a significant subset of the trajectories to be homotopic, and such a subset may not always exist. Secondly, it sometimes misses relevant parts of trajectories because homotopy does not characterize the shape of the trajectories in all situations. In this paper we present a new approach to overcome these two drawbacks, leading to majority medians. We give results from extensive experiments, which indicate that majority medians are indeed better than homotopic medians.

[1]  Leonidas J. Guibas,et al.  Kinetic Medians and kd-Trees , 2002, ESA.

[2]  STEPHANE DUROCHER,et al.  The Steiner Centre of a Set of Points: Stability, Eccentricity, and Applications to Mobile Facility Location , 2006, Int. J. Comput. Geom. Appl..

[3]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[4]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[5]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[6]  Jarke J. van Wijk,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Visualization of Vessel Movements , 2022 .

[7]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[8]  Maarten Löffler,et al.  Median Trajectories , 2010, Algorithmica.

[9]  Leonidas J. Guibas,et al.  Algorithmic issues in modeling motion , 2002, CSUR.

[10]  David G. Kirkpatrick,et al.  Bounded-Velocity Approximation of Mobile Euclidean 2-Centres , 2008, Int. J. Comput. Geom. Appl..

[11]  Gennady L. Andrienko,et al.  A Visual Analytics Approach to Exploration of Large Amounts of Movement Data , 2008, VISUAL.

[12]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[13]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[14]  A. Stillings Modeling Motion , 2005 .

[15]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[16]  Leonidas J. Guibas,et al.  Staying in the Middle : Exact and Approximate Medians in R 1 and R 2 for Moving Points ∗ , 2003 .

[17]  David Eppstein,et al.  Regression Depth and Center Points , 1998, Discret. Comput. Geom..