A new twist on PIFE: photoisomerisation-related fluorescence enhancement

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.

[1]  S. Woodson,et al.  Small RNAs and Hfq capture unfolded RNA target sites during transcription. , 2023, Molecular cell.

[2]  S. Hohng,et al.  Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination , 2023, Nucleic acids research.

[3]  T. Ha,et al.  Fluorescence lifetime analysis of smFRET with contribution of PIFE on donor and acceptor , 2023, bioRxiv.

[4]  N. Dokholyan,et al.  Structural and Dynamic Insights Into α-Synuclein Dimer Conformations , 2022, bioRxiv.

[5]  T. Lohman,et al.  “Helicase” Activity Promoted Through Dynamic Interactions Between a ssDNA Translocase and a Diffusing SSB Protein , 2022, bioRxiv.

[6]  Timothy D. Craggs,et al.  Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins , 2022, bioRxiv.

[7]  Yu Zhang,et al.  Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding , 2022, Nature Communications.

[8]  K. Neuman,et al.  UPF1 mutants with intact ATPase but deficient helicase activities promote efficient nonsense-mediated mRNA decay , 2022, bioRxiv.

[9]  E. Lerner,et al.  Identification and quantification of within-burst dynamics in singly labeled single-molecule fluorescence lifetime experiments , 2022, bioRxiv.

[10]  Xiufeng Zhang,et al.  Recent advances in bioprobes and biolabels based on cyanine dyes , 2022, Analytical and Bioanalytical Chemistry.

[11]  K. Gothelf,et al.  Protein-Induced Fluorescence Enhancement and Quenching in a Homogeneous DNA-Based Assay for Rapid Detection of Small-Molecule Drugs in Human Plasma. , 2022, ACS sensors.

[12]  S. Weiss,et al.  Multi-parameter photon-by-photon hidden Markov modeling , 2022, Nature Communications.

[13]  Ben M. Webb,et al.  New system for archiving integrative structures , 2021, Acta crystallographica. Section D, Structural biology.

[14]  R. Ebright,et al.  Transcription initiation at a consensus bacterial promoter proceeds via a ‘bind-unwind-load-and-lock’ mechanism , 2021, eLife.

[15]  J. Min,et al.  Mix-and-read, one-minute SARS-CoV-2 diagnostic assay: development of PIFE-based aptasensor. , 2021, Chemical communications.

[16]  Richard Börner,et al.  FRETraj: integrating single-molecule spectroscopy with molecular dynamics , 2021, Bioinform..

[17]  Maria M. Reif,et al.  Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series. , 2021, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  C. Seidel,et al.  Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines , 2021, The Journal of chemical physics.

[19]  S. Hamdan,et al.  Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level , 2021, Computational and structural biotechnology journal.

[20]  H. Park,et al.  Identification of thyroid hormone/thyroid hormone receptor interaction based on aptamer-assisted protein-induced fluorescence enhancement. , 2021, Biosensors & bioelectronics.

[21]  Philip Tinnefeld,et al.  Targetable conformationally restricted cyanines enable photon-count limited applications. , 2021, Angewandte Chemie.

[22]  E. Lerner,et al.  Utilizing Time-Resolved Protein-Induced Fluorescence Enhancement to Identify Stable Local Conformations One α-Synuclein Monomer at a Time. , 2021, Journal of visualized experiments : JoVE.

[23]  Quan Wang,et al.  Probing DNA-protein interactions using single-molecule diffusivity contrast , 2021, bioRxiv.

[24]  C. Seidel,et al.  Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. , 2021, Chemical Society reviews.

[25]  B. Bass,et al.  Transient kinetic studies of the antiviral Drosophila Dicer-2 reveal roles of ATP in self–nonself discrimination , 2021, eLife.

[26]  Nam Ki Lee,et al.  FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices , 2021, eLife.

[27]  R. Ebright,et al.  Transcription initiation at a consensus bacterial promoter proceeds via a “bind-unwind-load-and-lock” mechanism , 2021, bioRxiv.

[28]  B. Poolman,et al.  Structural and biophysical characterization of the tandem substrate-binding domains of the ABC importer GlnPQ , 2020, bioRxiv.

[29]  S. Gambhir,et al.  Real-time point-of-care total protein measurement with a miniaturized optoelectronic biosensor and fast fluorescence-based assay. , 2020, Biosensors & bioelectronics.

[30]  Maria M. Reif,et al.  Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series , 2020, bioRxiv.

[31]  N. Dokholyan,et al.  The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds , 2020, bioRxiv.

[32]  Jae Kyoo Lee,et al.  Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil , 2020, Scientific Reports.

[33]  N. Luedtke,et al.  A Highly Fluorescent Nucleobase Molecular Rotor. , 2020, Journal of the American Chemical Society.

[34]  N. Elad,et al.  Allostery through DNA drives phenotype switching , 2020, Nature Communications.

[35]  James L. Banal,et al.  Identification of Non-Radiative Decay Pathways in Cy3. , 2020, The journal of physical chemistry letters.

[36]  I. Emilie Steinmark,et al.  Probing DNA Dynamics: Stacking‐Induced Fluorescence Increase (SIFI) versus FRET , 2020, ChemPhotoChem.

[37]  P. Tinnefeld,et al.  Impact of Cyanine Conformational Restraint in the Near-Infrared Range. , 2020, The Journal of organic chemistry.

[38]  M. Record,et al.  Fluorescence-Detected Conformational Changes in Duplex DNA in Open Complex Formation by E. coli RNA Polymerase: Upstream Wrapping and Downstream Bending Precede Clamp Opening and Insertion of the Downstream Duplex , 2020, bioRxiv.

[39]  Danny Kowerko,et al.  Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts , 2020, Nature Communications.

[40]  S. Myong,et al.  Loss of Dynamic RNA Interaction and Aberrant Phase Separation Induced by Two Distinct Types of ALS/FTD-Linked FUS Mutations. , 2020, Molecular cell.

[41]  A. Kozlov,et al.  Protein Environment and DNA Orientation Affect Protein-Induced Cy3 Fluorescence Enhancement. , 2019, Biophysical journal.

[42]  Sheng Wang,et al.  Structures and mechanism of transcription initiation by bacterial ECF factors , 2019, Nucleic acids research.

[43]  S. Hamdan,et al.  Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation , 2019, Nature Communications.

[44]  R. Sigel,et al.  Stick, Flick, Click: DNA-guided Fluorescent Labeling of Long RNA for Single-molecule FRET. , 2019, Chimia.

[45]  M. Hengesbach,et al.  Strategic labelling approaches for RNA single-molecule spectroscopy , 2019, RNA biology.

[46]  Holger Gohlke,et al.  Automated and optimally FRET-assisted structural modeling , 2019, Nature Communications.

[47]  A. Tatikolov,et al.  Isomerization and Properties of Isomers of Carbocyanine Dyes , 2018, Sci.

[48]  H. Park,et al.  Protein-induced fluorescence enhancement for a simple and universal detection of protein/small molecule interactions , 2018, RSC advances.

[49]  S. Lopez,et al.  Stacking-induced fluorescence increase reveals allosteric interactions through DNA , 2018, Nucleic acids research.

[50]  R. Roy,et al.  Protein-induced fluorescence enhancement as aptamer sensing mechanism for thrombin detection , 2018, Sensors and Actuators B: Chemical.

[51]  T. Ha,et al.  Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution. , 2018, Molecular cell.

[52]  Christian Petermayer,et al.  Indigoid Photoswitches: Visible Light Responsive Molecular Tools. , 2018, Accounts of chemical research.

[53]  Waldemar Schrimpf,et al.  PAM: A Framework for Integrated Analysis of Imaging, Single-Molecule, and Ensemble Fluorescence Data , 2018, Biophysical journal.

[54]  T. Heyduk,et al.  DNA template sequence control of bacterial RNA polymerase escape from the promoter , 2018, Nucleic acids research.

[55]  A. Saboury,et al.  Nile red compensates for thioflavin T assay biased in the presence of curcumin , 2018 .

[56]  Antonino Ingargiola,et al.  Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer , 2018, Science.

[57]  G. T. Hwang Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids , 2018, Molecules.

[58]  R. Sigel,et al.  Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy , 2017, Nucleic acids research.

[59]  Nam Ki Lee,et al.  Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study , 2017, Nature Methods.

[60]  Markus Sauer,et al.  Cyanine Conformational Restraint in the Far-Red Range. , 2017, Journal of the American Chemical Society.

[61]  K. Altmann,et al.  RNA polymerase motions during promoter melting , 2017, Science.

[62]  G. Cosa,et al.  Conformational Changes Spanning Angstroms to Nanometers via a Combined Protein-Induced Fluorescence Enhancement-Förster Resonance Energy Transfer Method. , 2017, The journal of physical chemistry. B.

[63]  J. Doudna,et al.  RNA Scanning of a Molecular Machine with a Built-in Ruler. , 2017, Journal of the American Chemical Society.

[64]  Zhefeng Guo,et al.  Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation , 2017, Royal Society Open Science.

[65]  K. Ríha,et al.  A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement , 2016, Scientific Reports.

[66]  Toma E Tomov,et al.  Photon-by-Photon Hidden Markov Model Analysis for Microsecond Single-Molecule FRET Kinetics. , 2016, The journal of physical chemistry. B.

[67]  R. Sigel,et al.  Metal ion induced heterogeneity in RNA folding studied by smFRET , 2016 .

[68]  Richard Börner,et al.  An atomistic view on carbocyanine photophysics in the realm of RNA. , 2016, Physical chemistry chemical physics : PCCP.

[69]  Shimon Weiss,et al.  Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers , 2016, Scientific Reports.

[70]  Shimon Weiss,et al.  A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement–Förster-Type Resonance Energy Transfer (PIFE-FRET) , 2016, The journal of physical chemistry. B.

[71]  A. Kozlov,et al.  Chemo-mechanical pushing of proteins along single-stranded DNA , 2016, Proceedings of the National Academy of Sciences.

[72]  T. Cordes,et al.  Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[73]  J. Loparo,et al.  A general approach to visualize protein binding and DNA conformation without protein labelling , 2016, Nature Communications.

[74]  T. Heyduk,et al.  Real-Time Observation of Backtracking by Bacterial RNA Polymerase. , 2016, Biochemistry.

[75]  V. Birkedal,et al.  Dynamics of fluorescent dyes attached to G-quadruplex DNA and their effect on FRET experiments. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[76]  Andreas Plückthun,et al.  Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells , 2015, Nature Methods.

[77]  Monika A. Ciuba,et al.  Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3. , 2015, The journal of physical chemistry letters.

[78]  Kenji Matsuda,et al.  Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. , 2014, Chemical reviews.

[79]  H. Grubmüller,et al.  AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. , 2014, Journal of chemical theory and computation.

[80]  T. Heyduk,et al.  Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse. , 2014, The Biochemical journal.

[81]  E. Elson,et al.  Diffusion of human replication protein A along single-stranded DNA. , 2014, Journal of molecular biology.

[82]  Sua Myong,et al.  Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing , 2014, Nucleic acids research.

[83]  A. Kapanidis,et al.  Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules. , 2014, Physical chemistry chemical physics : PCCP.

[84]  P. V. von Hippel,et al.  Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments , 2014, Nucleic acids research.

[85]  Sua Myong,et al.  Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. , 2014, Chemical Society reviews.

[86]  Timothy D Craggs,et al.  Alternating-laser excitation: single-molecule FRET and beyond. , 2014, Chemical Society reviews.

[87]  M. Somoza,et al.  Comparison of the Sequence-Dependent Fluorescence of the Cyanine Dyes Cy3, Cy5, DyLight DY547 and DyLight DY647 on Single-Stranded DNA , 2014, PloS one.

[88]  J. Torella,et al.  Long-lived intracellular single-molecule fluorescence using electroporated molecules. , 2013, Biophysical journal.

[89]  D. Rueda,et al.  Carcinogenic adducts induce distinct DNA polymerase binding orientations , 2013, Nucleic acids research.

[90]  L. Tauzin,et al.  Photobleaching Lifetimes of Cyanine Fluorophores Used for Single‐Molecule Förster Resonance Energy Transfer in the Presence of Various Photoprotection Systems , 2013, Chembiochem : a European journal of chemical biology.

[91]  Martin Hoefling,et al.  In silico FRET from simulated dye dynamics , 2013, Comput. Phys. Commun..

[92]  R. Galletto,et al.  Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA , 2013, Nucleic acids research.

[93]  Lijiang Yang,et al.  Probing Allostery Through DNA , 2013, Science.

[94]  T. Lohman,et al.  Asymmetric Regulation of Bipolar Single-stranded DNA Translocation by the Two Motors within Escherichia coli RecBCD Helicase* , 2012, The Journal of Biological Chemistry.

[95]  Claus A M Seidel,et al.  A toolkit and benchmark study for FRET-restrained high-precision structural modeling , 2012, Nature Methods.

[96]  T. Lohman,et al.  The primary and secondary translocase activities within E. coli RecBC helicase are tightly coupled to ATP hydrolysis by the RecB motor. , 2012, Journal of molecular biology.

[97]  D. Rueda,et al.  Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I , 2012, Nucleic acids research.

[98]  T. Brown,et al.  A highly fluorescent DNA toolkit: synthesis and properties of oligonucleotides containing new Cy3, Cy5 and Cy3B monomers , 2012, Nucleic acids research.

[99]  D. Lilley,et al.  The structure of sulfoindocarbocyanine 3 terminally attached to dsDNA via a long, flexible tether. , 2012, Biophysical journal.

[100]  Sarah E. LeGresley,et al.  Single-Molecule Analysis and Lifetime Estimates of Heterogeneous Low-Count-Rate Time-Correlated Fluorescence Data , 2011, Applied spectroscopy.

[101]  H. Grubmüller,et al.  Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach , 2011, PloS one.

[102]  Shoji Takada,et al.  CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. , 2011, Journal of chemical theory and computation.

[103]  Hajin Kim,et al.  Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity , 2011, Proceedings of the National Academy of Sciences.

[104]  Yusdi Santoso,et al.  Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. , 2011, Biophysical journal.

[105]  A. van der Vaart,et al.  Cy3-DNA stacking interactions strongly depend on the identity of the terminal basepair. , 2011, Biophysical journal.

[106]  M. Levitus,et al.  Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments , 2010, Quarterly Reviews of Biophysics.

[107]  Marcia Levitus,et al.  Sequence-dependent photophysical properties of Cy3-labeled DNA , 2010, BiOS.

[108]  K. Weninger,et al.  Detecting the conformation of individual proteins in live cells , 2010, Nature Methods.

[109]  M. Levitus,et al.  DNA sequence-dependent enhancement of Cy3 fluorescence , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[110]  T. Lohman,et al.  Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. , 2009, Molecular cell.

[111]  T. Ha,et al.  Fluorescent Lifetime Trajectories of a Single Fluorophore Reveal Reaction Intermediates During Transcription Initiation , 2009, Journal of the American Chemical Society.

[112]  M. Levitus,et al.  Nucleobase-Specific Enhancement of Cy3 Fluorescence , 2009, Journal of Fluorescence.

[113]  Taekjip Ha,et al.  Cytosolic Viral Sensor RIG-I Is a 5'-Triphosphate–Dependent Translocase on Double-Stranded RNA , 2009, Science.

[114]  Jens Michaelis,et al.  A nano-positioning system for macromolecular structural analysis , 2008, Nature Methods.

[115]  D. Lilley,et al.  Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids , 2008, Proceedings of the National Academy of Sciences.

[116]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[117]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[118]  M. Losytskyy,et al.  Symmetric cyanine dyes for detecting nucleic acids , 2008, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[119]  T. Lohman,et al.  Bacillus stearothermophilus PcrA Monomer Is a Single-stranded DNA Translocase but Not a Processive Helicase in Vitro* , 2007, Journal of Biological Chemistry.

[120]  M. Sanborn,et al.  Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. , 2007, The journal of physical chemistry. B.

[121]  Guobin Luo,et al.  Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase , 2007, Proceedings of the National Academy of Sciences.

[122]  Roland K. O. Sigel,et al.  From nucleotides to ribozymes—A comparison of their metal ion binding properties , 2007 .

[123]  T. Lohman,et al.  A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. , 2007, Molecular cell.

[124]  Andong Xia,et al.  Characterization of photoinduced isomerization and intersystem crossing of the cyanine dye Cy3. , 2007, The journal of physical chemistry. A.

[125]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[126]  Rainer Erdmann,et al.  Spectral identification of specific photophysics of cy5 by means of ensemble and single molecule measurements. , 2006, The journal of physical chemistry. A.

[127]  H. Grubmüller,et al.  Simulation of fluorescence anisotropy experiments: probing protein dynamics. , 2005, Biophysical journal.

[128]  T. Lohman,et al.  Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[129]  T. Lohman,et al.  Mechanism of ATP-dependent translocation of E.coli UvrD monomers along single-stranded DNA. , 2004, Journal of molecular biology.

[130]  T. Lohman,et al.  Fluorescence stopped-flow studies of single turnover kinetics of E.coli RecBCD helicase-catalyzed DNA unwinding. , 2004, Journal of molecular biology.

[131]  A. Ebner,et al.  Cy3B™: Improving the Performance of Cyanine Dyes , 2004, Journal of Fluorescence.

[132]  A. Kozlov,et al.  Stopped-flow studies of the kinetics of single-stranded DNA binding and wrapping around the Escherichia coli SSB tetramer. , 2002, Biochemistry.

[133]  Larry J Kricka,et al.  Stains, labels and detection strategies for nucleic acids assays , 2002, Annals of clinical biochemistry.

[134]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[135]  M. Jezewska,et al.  Multiple-step kinetic mechanisms of the ssDNA recognition process by human polymerase beta in its different ssDNA binding modes. , 2001, Biochemistry.

[136]  Jerker Widengren,et al.  Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy , 2000 .

[137]  B. K. Mishra,et al.  Cyanines during the 1990s: A Review. , 2000, Chemical reviews.

[138]  D. Lilley,et al.  Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. , 2000, Biochemistry.

[139]  R. D. Paolo,et al.  Photoisomerization Dynamics and Spectroscopy of the Polymethine Dye DTCI. , 1996 .

[140]  H. G. Drickamer,et al.  Spectroscopy of cyanine dyes in fluid solution at atmospheric and high pressure: the effect of viscosity on nonradiative processes , 1994 .

[141]  R. Negri,et al.  Temperature Dependence of Fluorescence and Photoisomerization in Symmetric Carbocyanines (I). Influence of Medium Viscosity and Molecular Structure , 1994 .

[142]  H. Crissman,et al.  TOTO and YOYO: new very bright fluorochromes for DNA content analyses by flow cytometry. , 1994, Cytometry.

[143]  C. J. Lewis,et al.  Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. , 1993, Bioconjugate chemistry.

[144]  V. Sundström,et al.  Analysis of microviscosity and reaction coordinate concepts in isomerization dynamics described by Kramers’ theory , 1991 .

[145]  T. Hukka,et al.  An isomerization reaction of a cyanine dye in n-alcohols: microscopic friction and an excited-state barrier crossing , 1991 .

[146]  D. Waldeck Photoisomerization Dynamics of Stilbenes , 1991 .

[147]  J. Tocho,et al.  Relaxation processes of singlet excited state of 3,3′-diethyloxadicarbocyanine iodide (DODCI) photoisomer , 1990 .

[148]  F. Janiak,et al.  Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. , 1990, Biochemistry.

[149]  V. Sundström,et al.  Solvent-dependent barrier heights of excited-state photoisomerization reactions , 1985 .

[150]  T. Gillbro,et al.  Viscosity-dependent isomerization yields of some cyanine dyes. A picosecond laser spectroscopy study , 1982 .

[151]  W. Sibbett,et al.  Substituent and environmental effects on the picosecond lifetimes of the polymethine cyanine dyes , 1981 .

[152]  L. Zechmeister,et al.  On stereoisomerism in the cyanine dye series , 1953, Experientia.

[153]  H. Gohlke,et al.  1 Automated and optimally FRET-assisted structural modeling , 2019 .

[154]  S. Myong,et al.  TWO Single-Molecule Imaging With One Color Fluorescence , 2016 .

[155]  A. Kozlov,et al.  SSB-DNA binding monitored by fluorescence intensity and anisotropy. , 2012, Methods in molecular biology.

[156]  T. Lohman,et al.  Fluorescence methods to study DNA translocation and unwinding kinetics by nucleic acid motors. , 2012, Methods in molecular biology.

[157]  Jin-Soo Kim,et al.  Live-cell dSTORM with SNAP-tag fusion proteins , 2010, Nature Methods.

[158]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[159]  J. Lakowicz Time-Dependent Anisotropy Decays , 1999 .

[160]  G. Scheibe,et al.  Zur photochemischen trans‐cis‐Umlagerung einfacher Cyaninfarbstoffe , 1966, Berichte der Bunsengesellschaft für physikalische Chemie.

[161]  A. Ebner,et al.  Cy 3 BTM : Improving the Performance of Cyanine Dyes , 2022 .