The case for Auger recombination in In1−xGaxAsyP1−y

The possible Auger recombination mechanisms in direct‐gap semiconductors are investigated. These include band‐to‐band processes, phonon‐assisted processes, and Auger recombination via shallow traps. The band‐to‐band Auger rates are calculated including Fermi statistics, nonparabolic bands, and screening effects both for n‐type and p‐type semiconductors. The nonparabolicity is calculated using the Kane‐band model. The band‐to‐band Auger processes are characterized by a strong temperature dependence, the Auger rate decreasing rapidly with decreasing temperature. The phonon‐assisted and the trap processes do not exhibit such a strong temperature dependence. This is because the additional momentum conservation for the four‐particle states in band‐to‐band processes gives rise to a ’’threshold energy’’ for the process. For the same reason, the band‐to‐band Auger rate decreases rapidly with increasing band gap. In large‐band‐gap semiconductors the weakly temperature‐dependent phonon‐assisted processes are expect...

[1]  J. Tauc Electron impact ionization in semiconductors , 1959 .

[2]  Frank Stern,et al.  Calculated spectral dependence of gain in excited GaAs , 1976 .

[3]  A. Yariv,et al.  Large optical cavity AlGaAs injection lasers with multiple active regions , 1980 .

[4]  M. DiDomenico,et al.  Effects of Plasma Screening and Auger Recombination on the Luminescent Efficiency in GaP , 1970 .

[5]  Y. Horikoshi,et al.  Temperature Sensitive Threshold Current of InGaAsP–InP Double Heterostructure Lasers , 1979 .

[6]  Niloy K. Dutta,et al.  Calculated temperature dependence of threshold current of GaAs‐AlxGa1−xAs double heterostructure lasers , 1981 .

[7]  L. Bess Possible Mechanism for Radiationless Recombination in Semiconductors , 1957 .

[8]  Auger coefficients for highly doped and highly excited semiconductors , 1978 .

[9]  G. Henshall,et al.  Nonradiative carrier loss and temperature sensitivity of threshold in 1.27 μm (GaIn)(AsP)/InP d.h. lasers , 1980 .

[10]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[11]  Phonon-assisted Auger recombination in germanium , 1976 .

[12]  E. Kane,et al.  Thomas-Fermi Approach to Impure Semiconductor Band Structure , 1963 .

[13]  W. Lochmann Phonon‐assisted auger recombination in semiconductors , 1977 .

[14]  A. Beattie,et al.  Recombination in Semiconductors by a Light Hole Auger Transition , 1967 .

[15]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[16]  N.E. Schumaker,et al.  Ambipolar transport in double heterostructure injection lasers , 1980, IEEE Electron Device Letters.

[17]  P. T. Landsberg,et al.  One-dimensional overlap functions and their application to Auger recombination in semiconductors , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  J. S. Blakemore Semiconductor Statistics , 1962 .

[19]  M. Takeshima Auger recombination in a semiconductor under a magnetic field , 1973 .

[20]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[21]  Niloy K. Dutta,et al.  Temperature dependence of threshold and electrical characteristics of InGaAsP-InP d.h. lasers , 1980 .

[22]  F. Stern Band-Tail Model for Optical Absorption and for the Mobility Edge in Amorphous Silicon , 1971 .

[23]  H. Casey,et al.  Heterostructure lasers , 1978 .

[24]  R. Nahory,et al.  Temperature dependence of InGaAsP double-heterostructure laser characteristics , 1979 .

[25]  R. Conradt,et al.  Auger recombination in GaAs and GaSb , 1977 .

[26]  The Phonon-assisted Auger Effect in Semiconductors , 1961 .

[27]  P. Landsberg,et al.  Auger recombination and impact ionization involving traps in semiconductors , 1964 .

[28]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[29]  R. Nicholas,et al.  Cyclotron resonance and the magnetophonon effect in GaxIn1−xAsyP1−y , 1980 .

[30]  A. R. Goodwin,et al.  Threshold temperature characteristics of double heterostructure Ga1−xAlxAs lasers , 1975 .

[31]  N. Dutta,et al.  Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .

[32]  M. Lax,et al.  Impurity-Band Tails in the High-Density Limit. I. Minimum Counting Methods , 1966 .

[33]  Niloy K. Dutta,et al.  Gain‐current relation for In0.72Ga0.28As0.6P0.4 lasers , 1981 .

[34]  C. Hwang,et al.  Threshold behavior of (GaAl)As‐GaAs lasers at low temperatures , 1978 .

[35]  M. Horiguchi,et al.  Spectral losses of low-OH-content optical fibres , 1976 .

[36]  M. Takeshima Disorder‐enhanced Auger recombination in III‐V alloys , 1978 .

[37]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[38]  L. Huldt Auger recombination in germanium , 1974 .

[39]  T. Pearsall,et al.  Optical pumping and the valence‐band light‐hole effective mass in GaxIn1−xAsyP1−y (y≃2.2x) , 1981 .

[40]  Akira Sugimura,et al.  Band‐to‐band Auger effect in GaSb and InAs lasers , 1980 .

[41]  P T Landsberg,et al.  Overlap Integrals for Bloch Electrons , 1963 .

[42]  M. Takeshima Auger recombination in InAs, GaSb, InP, and GaAs , 1972 .

[43]  M. Takusagawa,et al.  Temperature characteristics of threshold current in InGaAsP/InP double‐heterostructure lasers , 1980 .

[44]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[45]  N. Dutta Calculated absorption, emission, and gain in In0.72Ga0.28As0.6P0.4 , 1980 .

[46]  A. Sugimura,et al.  Band-to-band Auger recombination effect on InGaAsP laser threshold , 1981 .