Facts and fictions about polymorphism.

We present new facts about polymorphism based on (i) crystallographic data from the Cambridge Structural Database (CSD, a database built over 50 years of community effort), (ii) 229 solid form screens conducted at Hoffmann-La Roche and Eli Lilly and Company over the course of 8+ and 15+ years respectively and (iii) a dataset of 446 polymorphic crystals with energies and properties computed with modern DFT-d methods. We found that molecular flexibility or size has no correlation with the ability of a compound to be polymorphic. Chiral molecules, however, were found to be less prone to polymorphism than their achiral counterparts and compounds able to hydrogen bond exhibit only a slightly higher propensity to polymorphism than those which do not. Whilst the energy difference between polymorphs is usually less than 1 kcal mol(-1), conformational polymorphs are capable of differing by larger values (up to 2.5 kcal mol(-1) in our dataset). As overall statistics, we found that one in three compounds in the CSD are polymorphic whilst at least one in two compounds from the Roche and Lilly set display polymorphism with a higher estimate of up to three in four when compounds are screened intensively. Whilst the statistics provide some guidance of expectations, each compound constitutes a new challenge and prediction and realization of targeted polymorphism still remains a holy grail of materials sciences.

[1]  G. Day,et al.  Static and lattice vibrational energy differences between polymorphs , 2015 .

[2]  Joel Bernstein,et al.  “Predicting” Crystal Forms of Pharmaceuticals Using Hydrogen Bond Propensities: Two Test Cases , 2014 .

[3]  R. Tan,et al.  Polymorphism in cocrystals: a review and assessment of its significance , 2014 .

[4]  J. McMahon,et al.  Contrasting Polymorphism of Related Small Molecule Drugs Correlated and Guided by the Computed Crystal Energy Landscape , 2014 .

[5]  D. Presti,et al.  Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investigation , 2014 .

[6]  S. Price Why don't we find more polymorphs? , 2013, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[7]  G. Stephenson,et al.  Crystal Structure Prediction of a Flexible Molecule of Pharmaceutical Interest with Unusual Polymorphic Behavior , 2013 .

[8]  A. Tkatchenko,et al.  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[9]  C. Adjiman,et al.  The polymorphs of ROY: application of a systematic crystal structure prediction technique. , 2012, Acta crystallographica. Section B, Structural science.

[10]  G. Beran,et al.  Crystal Polymorphism in Oxalyl Dihydrazide: Is Empirical DFT-D Accurate Enough? , 2012, Journal of chemical theory and computation.

[11]  S. Price,et al.  Is the Fenamate Group a Polymorphophore? Contrasting the Crystal Energy Landscapes of Fenamic and Tolfenamic Acids , 2012 .

[12]  G. Stephenson,et al.  Symmetry Breaking: Polymorphic Form Selection by Enantiomers of the Melatonin Agonist and Its Missing Polymorph , 2012 .

[13]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[14]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[15]  Alfred Y Lee,et al.  Crystal polymorphism in chemical process development. , 2011, Annual review of chemical and biomolecular engineering.

[16]  F. Leusen,et al.  Molecule VI, a benchmark crystal-structure-prediction sulfonimide: are its polymorphs predictable? , 2011, Angewandte Chemie.

[17]  A. Bond,et al.  Single crystals of aspirin form II: crystallisation and stability , 2011 .

[18]  Marcus A. Neumann,et al.  Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations , 2010, Acta crystallographica. Section B, Structural science.

[19]  Frank H. Allen,et al.  Truly prospective prediction: inter- and intramolecular hydrogen bonding , 2010 .

[20]  Peter T. A. Galek,et al.  Universal prediction of intramolecular hydrogen bonds in organic crystals. , 2010, Acta crystallographica. Section B, Structural science.

[21]  Peter T. A. Galek,et al.  Knowledge-based H-bond prediction to aid experimental polymorph screening , 2009 .

[22]  M. Neumann,et al.  Can crystal structure prediction guide experimentalists to a new polymorph of paracetamol , 2009 .

[23]  A. Bond Polymorphism in molecular crystals , 2009 .

[24]  J. Senker,et al.  Wöhler and Liebig Revisited: 176 Years of Polymorphism in Benzamide - and the Story Still Continues!† , 2009 .

[25]  Peter T. A. Galek,et al.  Persistent hydrogen bonding in polymorphic crystal structures. , 2009, Acta crystallographica. Section B, Structural science.

[26]  S. Price,et al.  Computational prediction of organic crystal structures and polymorphism , 2008 .

[27]  Sarah L Price,et al.  Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. , 2008, The Journal of chemical physics.

[28]  Ashwini Nangia,et al.  Conformational polymorphism in organic crystals. , 2008, Accounts of chemical research.

[29]  Jonathan M Goodman,et al.  Polymorph control: past, present and future. , 2008, Drug discovery today.

[30]  J. Boeyens,et al.  Models, mysteries, and magic of molecules , 2008 .

[31]  Peter T. A. Galek,et al.  Knowledge-based model of hydrogen-bonding propensity in organic crystals. , 2007, Acta crystallographica. Section B, Structural science.

[32]  J. Senker,et al.  Polymorphism in benzamide: solving a 175-year-old riddle. , 2007, Angewandte Chemie.

[33]  M. Spackman,et al.  Solvent inclusion in the structural voids of form II carbamazepine: single-crystal X-ray diffraction, NMR spectroscopy and Hirshfeld surface analysis , 2007 .

[34]  G. P. Stahly Diversity in Single- and Multiple-Component Crystals. The Search for and Prevalence of Polymorphs and Cocrystals , 2007 .

[35]  G. Day,et al.  Solvent inclusion in form II carbamazepine. , 2007, Chemical communications.

[36]  J. Steed,et al.  Comment on “On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1)” by Gautam R. Desiraju, CrystEngComm, 2007, 9, 91 , 2007 .

[37]  G. Desiraju,et al.  On the polymorphism of aspirin: crystalline aspirin as intergrowths of two "polymorphic" domains. , 2007, Angewandte Chemie.

[38]  Gautam R. Desiraju,et al.  On the presence of multiple molecules in the crystal asymmetric unit ( Z ′ > 1) , 2007 .

[39]  G. Day,et al.  Importance of Molecular Shape for the Overall Stability of Hydrogen Bond Motifs in the Crystal Structures of Various Carbamazepine-Type Drug Molecules , 2007 .

[40]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[41]  J. Bernstein,et al.  Serendipity and four polymorphic structures of benzidine, C12H12N2. , 2006, Journal of the American Chemical Society.

[42]  G. Day,et al.  Amide Pyramidalization in Carbamazepine: A Flexibility Problem in Crystal Structure Prediction? , 2006 .

[43]  G. Desiraju,et al.  Dimorphs of 4′-amino-4-hydroxy-2′-methylbiphenyl: Assessment of likelihood of polymorphism in flexible molecules , 2006 .

[44]  K. Harris,et al.  Abundant polymorphism in a system with multiple hydrogen-bonding opportunities: oxalyl dihydrazide. , 2006, Journal of the American Chemical Society.

[45]  J. Steed,et al.  Unusual variations in the incidence of Z' > 1 in oxo-anion structures. , 2006, Chemical communications.

[46]  L. Reddy,et al.  Carboxamide-pyridine N-oxide heterosynthon for crystal engineering and pharmaceutical cocrystals. , 2006, Chemical communications.

[47]  Peddy Vishweshwar,et al.  Pharmaceutical co-crystals. , 2006, Journal of pharmaceutical sciences.

[48]  Rolf Hilfiker,et al.  POLYMORPHISM , 1945 .

[49]  Peddy Vishweshwar,et al.  The predictably elusive form II of aspirin. , 2005, Journal of the American Chemical Society.

[50]  K. Shankland,et al.  Polymorphism in benzamide. , 2005, Angewandte Chemie.

[51]  J. McMahon,et al.  Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. , 2005, Chemical communications.

[52]  Abu T M Serajuddin,et al.  Trends in solubility of polymorphs. , 2005, Journal of pharmaceutical sciences.

[53]  A. Matzger,et al.  Crystalline polymorph selection and discovery with polymer heteronuclei. , 2005, Journal of the American Chemical Society.

[54]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[55]  C. Lipinski Lead- and drug-like compounds: the rule-of-five revolution. , 2004, Drug discovery today. Technologies.

[56]  William Jones,et al.  Solvent-drop grinding: green polymorph control of cocrystallisation. , 2004, Chemical communications.

[57]  Michael J Cima,et al.  High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. , 2004, Advanced drug delivery reviews.

[58]  Michael J. Zaworotko,et al.  Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? , 2003, Chemical communications.

[59]  J. Bauer,et al.  Ritonavir: An Extraordinary Example of Conformational Polymorphism , 2001, Pharmaceutical Research.

[60]  J. Steed Should solid-state molecular packing have to obey the rules of crystallographic symmetry? , 2003 .

[61]  M. Spackman,et al.  Fingerprinting intermolecular interactions in molecular crystals , 2002 .

[62]  Joel Bernstein,et al.  Polymorphism in Molecular Crystals , 2002 .

[63]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[64]  D. Grant,et al.  Estimating the relative stability of polymorphs and hydrates from heats of solution and solubility data. , 2001, Journal of pharmaceutical sciences.

[65]  S. Chemburkar,et al.  Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development , 2000 .

[66]  C. Görbitz,et al.  On the inclusion of solvent molecules in the crystal structures of organic compounds , 2000, Acta crystallographica. Section B, Structural science.

[67]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[68]  Michael J. Zaworotko,et al.  Crystal engineering : the design and application of functional solids , 1999 .

[69]  G. Desiraju,et al.  Design of organic solids , 1998 .

[70]  Christer B. Aakeröy,et al.  Crystal engineering : Strategies and architectures , 1997 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[74]  A. Gavezzotti,et al.  Polymorphic Forms of Organic Crystals at Room Conditions: Thermodynamic and Structural Implications , 1995 .

[75]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[76]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[77]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[78]  K. Seddon,et al.  The hydrogen bond and crystal engineering , 1994 .

[79]  Jack D. Dunitz,et al.  Phase transitions in molecular crystals from a chemical viewpoint , 1991 .

[80]  G. Desiraju,et al.  Crystal Engineering: A Textbook , 1989 .

[81]  A. P. Lötter,et al.  Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine. , 1987, Journal of pharmaceutical sciences.

[82]  A. Burger,et al.  On the polymorphism of pharmaceuticals and other molecular crystals. I , 1979 .

[83]  A. Burger,et al.  On the polymorphism of pharmaceuticals and other molecular crystals. II , 1979 .

[84]  A. Hagler,et al.  Conformational polymorphism. The influence of crystal structure on molecular conformation , 1978 .

[85]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[86]  W. Mccrone,et al.  Pharmaceutical applications of polymorphism. , 1969, Journal of pharmaceutical sciences.

[87]  J. White,et al.  The crystal and molecular structure of benzamide , 1959 .

[88]  O. Lehmann Ueber physikalische Isomerie , 1877 .