Stability and convergence of nonconforming hp finite-element methods☆

The stability and convergence of nonconforming hp finite-element methods, in par- ticular, the mortar finite-element method and its variants, are established based on a new stability measure for these methods. Using a generalized eigenvalue analysis, estimates for this measure are computed numerically. Our numerical results demonstrate that these nonconforming methods prove to be good candidates for hp,implementation and also behave ss well as conforming finite-element methods. The discussion here ls primarily in two dimensions, but some extensions to three dimensions

[1]  J. Tinsley Oden,et al.  Problem decomposition for adaptive hp finite element methods , 1995 .

[2]  Faker Ben Belgacem,et al.  Optimal convergence rates of $hp$ mortar finite element methods for second-order elliptic problems , 2000 .

[3]  Padmanabhan Seshaiyer,et al.  Uniform hp convergence results for the mortar finite element method , 2000, Math. Comput..

[4]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[5]  Howard Swann On the use of Lagrange multipliers in domain decomposition for solving elliptic problems , 1993 .

[6]  Yvon Maday,et al.  A spectral element methodology tuned to parallel implementations , 1994 .

[7]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[8]  A Hierarchical Preconditioner for the Mortar Finite Element Method , 1995 .

[9]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[10]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[11]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[12]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[13]  Joseph E. Pasciak,et al.  Multigrid for the Mortar Finite Element Method , 2000, SIAM J. Numer. Anal..

[14]  A. Toselli Domain Decomposition Methods , 2004 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Dietrich Braess,et al.  A Multigrid Method for Nonconforming FE-Discretisations with Application to Non-Matching Grids , 1999, Computing.

[17]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[18]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[19]  Padmanabhan Seshaiyer,et al.  hp submeshing via non-conforming finite element methods , 2000 .