Integrable two-dimensional quantum mappings

[1]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[2]  H. Capel,et al.  Integrable quantum mappings and non-ultralocal Yang-Baxter structures , 1992 .

[3]  Ramani,et al.  Do integrable mappings have the Painlevé property? , 1991, Physical review letters.

[4]  H. Capel,et al.  Complete integrability of Lagrangian mappings and lattices of KdV type , 1991 .

[5]  G. Quispel,et al.  Integrable mappings derived from soliton equations , 1991 .

[6]  P. Santini,et al.  Integrable symplectic maps , 1991 .

[7]  J. Roberts Order and chaos in reversible dynamical systems , 1990, Bulletin of the Australian Mathematical Society.

[8]  H. Capel,et al.  Integrable mappings and nonlinear integrable lattice equations , 1990 .

[9]  O. D. Almeida,et al.  Hamiltonian Systems: Chaos and Quantization , 1990 .

[10]  Y. Suris Discrete time generalized Toda lattices: Complete integrability and relation with relativistic Toda lattices , 1990 .

[11]  P. Deift,et al.  Generalized affine lie algebras and the solution of a class of flows associated with the QR eigenvalue algorithm , 1989 .

[12]  C. Thompson,et al.  Integrable mappings and soliton equations , 1988 .

[13]  A. Veselov Integration of the stationary problem for a classical spin chain , 1987 .

[14]  R. B. Potts Weierstrass elliptic difference equations , 1987, Bulletin of the Australian Mathematical Society.

[15]  M. Berry,et al.  False time-reversal violation and energy level statistics: the role of anti-unitary symmetry , 1986 .

[16]  C. Thompson,et al.  Iteration of some discretizations of the nonlinear Schrödinger equation , 1986 .

[17]  T. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .

[18]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical , 1984 .

[19]  C. Thompson,et al.  Integrable mappings and soliton equations II , 1989 .