Integrating Landsat Imageries and Digital Elevation Models to Infer Water Level Change in Hoover Dam

The Thematic Mapper onboard Landsat 4, 5, and Enhanced Thematic Mapper Plus (TM/ETM+) onboard Landsat 7 have frequency bands (green and SWIR) to effectively measure water body extents and their changes via the Modified Normalized Difference Water Index (MNDWI). Here, we developed a technique, called the thematic imagery-altimetry system (TIAS), to infer the vertical water changes from MNDWI horizontal water extent changes by integrating long-term TM/ETM+ imageries with available digital elevation models (DEMs). The result is a technique to quantify water level changes of natural or artificial water bodies over two decades. Several DEMs were used to compute intersects with TM/ETM+ water extent time series to evaluate the robustness of the technique. These DEMs include: the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Map version 2 (ASTER-GDEM2, at 1 arcsec resolution), the Shuttle Radar Topography Mission version 2 (SRTM C-band at 1 arcsec), and the Global Multiresolution Terrain Elevation Data (GMTED2010 at 7.5 arcsec). We demonstrated our technique near Hoover Dam (HD) in Lake Mead to quantify its respective decadal water level.

[1]  Juan B. Valdés,et al.  Characterizing the water extremes of the new century in the US South-west: a comprehensive assessment from state-of-the-art climate model projections , 2013 .

[2]  P. Berry,et al.  Global inland water monitoring from multi‐mission altimetry , 2005 .

[3]  Kaiqin Xu,et al.  Estimating river discharge from very high‐resolution satellite data: a case study in the Yangtze River, China , 2004 .

[4]  Peng Gong,et al.  Water-level changes in China's large lakes determined from ICESat/GLAS data , 2013 .

[5]  Frédéric Frappart,et al.  WATER VOLUME CHANGE IN THE LOWER MEKONG FROM SATELLITE ALTIMETRY AND IMAGERY DATA , 2006 .

[6]  Hugh P. Possingham,et al.  Global insights into water resources, climate change and governance , 2013 .

[7]  C. Shum,et al.  Present-day lake level variation from envisat altimetry over the northeastern qinghai-tibetan plateau: Links with precipitation and temperature , 2011 .

[8]  Zhong Lu,et al.  Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. , 2009 .

[9]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[10]  Chung-Yen Kuo,et al.  Calibration of JASON-1 Altimeter over Lake Erie Special Issue: Jason-1 Calibration/Validation , 2003 .

[11]  D. Lettenmaier,et al.  Global monitoring of large reservoir storage from satellite remote sensing , 2011 .

[12]  Frédérique Seyler,et al.  Monitoring Continental Surface Waters by Satellite Altimetry , 2008 .

[13]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[14]  David J. Harding,et al.  Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control , 2011, International Symposium on Lidar and Radar Mapping Technologies.

[15]  Faisal Hossain,et al.  Forecasting transboundary river water elevations from space , 2011 .

[16]  C. Prigent,et al.  Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought , 2012 .

[17]  Michael Durand,et al.  The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies , 2010, Proceedings of the IEEE.

[18]  R. Keith Raney,et al.  The delay/Doppler radar altimeter , 1998, IEEE Trans. Geosci. Remote. Sens..

[19]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[20]  Sabu Joseph,et al.  Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India , 2014 .

[21]  C. Kuo,et al.  Retracked Jason-2 Altimetry over Small Water Bodies: Case Study of Bajhang River, Taiwan , 2011 .

[22]  Carlos Lopez-Martinez,et al.  ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring , 2010 .

[23]  Laurence C. Smith,et al.  Remote sensing of volumetric storage changes in lakes , 2009 .

[24]  Chung-Yen Kuo,et al.  Regional Validation of Jason-2 Dual-Frequency Ionosphere Delays , 2010 .

[25]  C. Birkett,et al.  The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes , 1995 .

[26]  P. Berry,et al.  Estimation of Contamination of ERS-2 and POSEIDON Satellite Radar Altimetry Close to the Coasts of Australia , 2002 .

[27]  K. Wayne Forsythe,et al.  Visualization of Lake Mead Surface Area Changes from 1972 to 2009 , 2012, ISPRS Int. J. Geo Inf..

[28]  J. Smith,et al.  Stochastic modeling of flood peaks using the generalized extreme value distribution , 2002 .

[29]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[30]  Zhan Li,et al.  Lake Water Footprint Identification From Time-Series ICESat/GLAS Data , 2012, IEEE Geoscience and Remote Sensing Letters.

[31]  Matthew Rodell,et al.  Groundwater depletion during drought threatens future water security of the Colorado River Basin , 2014, Geophysical research letters.

[32]  Chung-Yen Kuo,et al.  Application of retracked satellite altimetry for inland hydrologic studies , 2010 .

[33]  Cheinway Hwang,et al.  A Preliminary Analysis of Lake Level and Water Storage Changes over Lakes Baikal and Balkhash from Satellite Altimetry and Gravimetry , 2011 .

[34]  William J. Emery,et al.  The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry Waveforms , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[35]  William P. Kustas,et al.  Remote sensing may provide unprecedented hydrological data , 1999 .

[36]  P. A. M. Berry,et al.  Retracking ERS-1 altimeter waveforms over land for topographic height determination: an expert systems approach , 1997 .

[37]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[38]  C. Shum,et al.  Envisat Altimetry Radar Waveform Retracking of Quasi-Specular Echoes over the Ice-Covered Qinghai Lake , 2013 .

[39]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[40]  Frédérique Seyler,et al.  Continental surface waters from satellite altimetry , 2006 .

[41]  Y. Hervé,et al.  FLOOD EXTENT PREDICTION FROM LAKE HEIGHTS AND WATER LEVEL ESTIMATION FROM FLOOD EXTENTS USING RIVER GAUGES, ELEVATION MODELS AND ENVISAT DATA , 2007 .

[42]  D. Gesch,et al.  Global multi-resolution terrain elevation data 2010 (GMTED2010) , 2011 .

[43]  D. Lettenmaier,et al.  Measuring surface water from space , 2004 .

[44]  Michael Durand,et al.  Please Scroll down for Article International Journal of Remote Sensing Characterization of Surface Water Storage Changes in Arctic Lakes Using Simulated Swot Measurements Characterization of Surface Water Storage Changes in Arctic Lakes Using Simulated Swot Measurements , 2022 .

[45]  Yuji Sakuno,et al.  Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data , 2012, Remote. Sens..

[46]  Wim G.M. Bastiaanssen,et al.  Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data , 2013 .

[47]  B. Wylie,et al.  Analysis of Dynamic Thresholds for the Normalized Difference Water Index , 2009 .

[48]  J. Willis,et al.  The OSTM/Jason-2 Mission , 2010 .

[49]  Delu Pan,et al.  Retracking strategy based on waveform Classification and sub-waveform extraction for coastal altimetry along China coastal seas , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[50]  Rodrigo Abarca-Del-Rio,et al.  Does Lake Titicaca still control the Lake Poopó system water levels? An investigation using satellite altimetry and MODIS data (2000–2009) , 2012 .

[51]  Alain Pietroniro,et al.  Hydrologic assessment of an inland freshwater delta using multi‐temporal satellite remote sensing , 1999 .

[52]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[53]  N. Picot,et al.  The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data , 2012 .

[54]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[55]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[56]  Wei Ji,et al.  Optimizing Remote Sensing-Based Level–Area Modeling of Large Lake Wetlands: Case Study of Poyang Lake , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[57]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .

[58]  B. D. Beckley,et al.  Investigating the Performance of the Jason-2/OSTM Radar Altimeter over Lakes and Reservoirs , 2010 .

[59]  A. Cazenave,et al.  Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels , 2005 .

[60]  C. Shum,et al.  Elevation changes of bering glacier system, Alaska, from 1992 to 2010, observed by satellite radar altimetry , 2013 .

[61]  Paul D. Bates,et al.  Geodetic corrections to Amazon River water level gauges using ICESat altimetry , 2012 .