Triple Differential Cross Sections for electron impact ionization of methane at intermediate energy

In a joint experimental and theoretical collaboration, triple differential cross sections are presented for electron-impact single ionization of the 1t2 and 2a1 states of CH4 at an incident electron energy of 250 eV. Experimental data from two different laboratories are compared with molecular 3-body distorted wave (M3DW) and generalized Sturmian function (GSF) calculations. Overall, we find a good experiment-experiment, and also a relatively good experiment-theories, agreement. We observe that for the 1t2 state, similarly to ionization of atomic p-states, the peak is sometimes doubled.

[1]  Xingyu Li,et al.  Theoretical study of ( e, 2e ) processes for valence orbitals of CH4 using a multicenter distorted-wave method , 2017 .

[2]  C. E. Brion,et al.  An investigation of hybridization and the orbital models of molecular electronic structure for CH4, NH3, and H2O , 2017 .

[3]  L. U. Ancarani,et al.  Electron Impact Ionization of CH4 for Different Momentum Transfers , 2017 .

[4]  L. U. Ancarani,et al.  Electron impact ionization of the outer valence orbital 1t2 of CH4 , 2017 .

[5]  C. Cappello,et al.  Theoretical study of (e, 2e) process of atomic and molecular targets* , 2017 .

[6]  C. Cappello,et al.  Application of a post-collisional-interaction distorted-wave model for (e, 2e) of some atomic targets and methane , 2016 .

[7]  C. Ning,et al.  Comparison of experimental and theoretical triple differential cross sections for the single ionization of C O 2 ( 1 π g ) by electron impact , 2016 .

[8]  L. U. Ancarani,et al.  Double ionization of helium by 2-keV electrons in equal- and unequal-energy configurations , 2016 .

[9]  S. Bahçelī,et al.  Triple differential cross section measurements for the outer valence molecular orbitals (1t2) of a methane molecule at 250 eV electron impact , 2016 .

[10]  C. Mario,et al.  Application of Generalized Sturmian Basis Functions to Molecular Systems , 2016 .

[11]  L. U. Ancarani,et al.  Double ionization of helium by proton impact: A generalized-Sturmian approach , 2015 .

[12]  F. D. Colavecchia,et al.  Double photoionization of helium: a generalized Sturmian approach , 2015 .

[13]  K. Bartschat,et al.  Kinematically complete study of low-energy electron-impact ionization of neon: Internormalized cross sections in three-dimensional kinematics , 2015 .

[14]  F. D. Colavecchia,et al.  Double ionization of helium by fast electrons with the Generalized Sturmian Functions method , 2015 .

[15]  R. Campeanu,et al.  Ionization of NH3 and CH4 by electron impact , 2015 .

[16]  C. Ning,et al.  Theoretical triple-differential cross sections of a methane molecule by a proper-average method , 2014 .

[17]  Chih-Yuan Lin,et al.  Theoretical study of (e ,2e) from outer- and inner-valence orbitals of CH4: A complex Kohn treatment , 2014 .

[18]  M. Dogan,et al.  Double Differential Cross-Sections for Electron Impact Ionization of Atoms and Molecules , 2013 .

[19]  J. Ullrich,et al.  Low energy (e, 2e) study from the 1t(2) orbital of CH4. , 2012, The Journal of chemical physics.

[20]  K. Bartschat,et al.  Large-scale pseudostate calculations for electron scattering from neon atoms , 2012 .

[21]  K. Nixon,et al.  Low energy (e,2e) measurements of CH4 and neon in the perpendicular plane. , 2012, The Journal of chemical physics.

[22]  K. Nixon,et al.  Low energy (e,2e) studies from CH4: results from symmetric coplanar experiments and molecular three-body distorted wave theory. , 2011, The Journal of chemical physics.

[23]  L. Nagy,et al.  Triple-differential cross-section calculations for the ionization of CH4 by electron impact , 2010 .

[24]  O. Al-Hagan,et al.  The Distorted-Wave Born Approach for Calculating Electron-Impact Ionization of Molecules , 2010 .

[25]  A. Naja,et al.  Dynamics of electron impact ionization of the outer and inner valence (1t2 and 2a1) molecular orbitals of CH4 at intermediate and large ion recoil momentum , 2009 .

[26]  D. Fursa,et al.  Fully differential cross-section measurements for electron-impact ionization of neon and xenon , 2009 .

[27]  O. Vorov,et al.  Experimental and theoretical (e, 2e) studies of argon (3p) ionization in asymmetric geometry , 2007 .

[28]  F. Robicheaux,et al.  Time-dependent close-coupling calculations for the double photoionization of He and H2 , 2004 .

[29]  P. Hervieux,et al.  Dynamics in Electron-Impact Ionization of H 2 O , 2004 .

[30]  A. Murray,et al.  Coplanar symmetric (e,2e) measurements from calcium at low energy , 2003 .

[31]  B. Lohmann,et al.  Comparative study of argon 3p electron-impact ionization at low energies , 2001 .

[32]  Isaacs,et al.  Collisional breakup in a quantum system of three charged particles , 1999, Science.

[33]  S. Cavanagh,et al.  LETTER TO THE EDITOR: Coplanar asymmetric (e, 2e) measurements of ionization of N2O , 1999 .

[34]  Murray,et al.  Evolution from the coplanar to the perpendicular plane geometry of helium (e,2e) differential cross sections symmetric in scattering angle and energy. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[35]  Bray,et al.  Convergent close-coupling calculations of electron-hydrogen scattering. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  F. H. Read,et al.  Real-time computer-optimized electron coincidence spectrometer , 1992 .

[37]  Roberto Moccia,et al.  One‐Center Basis Set SCF MO's. I. HF, CH4, and SiH4 , 1964 .

[38]  L. U. Ancarani,et al.  A Sturmian Approach to Photoionization of Molecules , 2016 .

[39]  F. D. Colavecchia,et al.  Chapter 7 – Three-Body Coulomb Problems with Generalized Sturmian Functions , 2013 .

[40]  C. Kaiser,et al.  GEC Student Award for Excellence Finalist: Atomic and Molecular Signatures for charged particle ionization , 2008 .