The Random Projection Method

Random projection Combinatorial optimization: Rounding via random projection Embedding metrics in Euclidean space Euclidean embeddings: Beyond distance preservation Learning theory: Robust concepts Intersections of half-spaces Information retrieval: Nearest neighbors Indexing and clustering Bibliography Appendix.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[3]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[4]  B. Grünbaum Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .

[5]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[6]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[7]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[8]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[9]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[10]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[11]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[12]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[13]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[14]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[15]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[16]  Susan T. Dumais,et al.  Using latent semantic analysis to improve information retrieval , 1988, CHI 1988.

[17]  Nimrod Megiddo,et al.  On the complexity of polyhedral separability , 1988, Discret. Comput. Geom..

[18]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[19]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[20]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[21]  Philip M. Long,et al.  Composite geometric concepts and polynomial predictability , 1990, COLT '90.

[22]  ERIC B. BAUM,et al.  On learning a union of half spaces , 1990, J. Complex..

[23]  Eric B. Baum,et al.  Polynomial time algorithms for learning neural nets , 1990, Annual Conference Computational Learning Theory.

[24]  Alexander Schrijver,et al.  Homotopic routing methods , 1990 .

[25]  Nick Littlestone,et al.  Redundant noisy attributes, attribute errors, and linear-threshold learning using winnow , 1991, COLT '91.

[26]  Susan T. Dumais,et al.  Improving the retrieval of information from external sources , 1991 .

[27]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[28]  S. Meiser,et al.  Point Location in Arrangements of Hyperplanes , 1993, Inf. Comput..

[29]  Avrim Blum,et al.  Learning an intersection of k halfspaces over a uniform distribution , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[30]  Tom Bylander,et al.  Learning linear threshold functions in the presence of classification noise , 1994, COLT '94.

[31]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[32]  Paul D. Seymour,et al.  Packing directed circuits fractionally , 1995, Comb..

[33]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  Ramesh Hariharan,et al.  Derandomizing semidefinite programming based approximation algorithms , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[35]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[36]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[37]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[38]  Howard J. Karloff,et al.  How good is the Goemans-Williamson MAX CUT algorithm? , 1996, STOC '96.

[39]  O(n 3=14 )-coloring for 3-colorable Graphs , 1996 .

[40]  Santosh S. Vempala,et al.  A random sampling based algorithm for learning the intersection of half-spaces , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[41]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[42]  Jon M. Kleinberg,et al.  Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.

[43]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[44]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[45]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[46]  John Shawe-Taylor,et al.  Generalization Performance of Support Vector Machines and Other Pattern Classifiers , 1999 .

[47]  Rafail Ostrovsky,et al.  Efficient search for approximate nearest neighbor in high dimensional spaces , 1998, STOC '98.

[48]  Alan M. Frieze,et al.  A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions , 1996, Algorithmica.

[49]  Santosh S. Vempala Random projection: a new approach to VLSI layout , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[50]  Uriel Feige,et al.  Approximating the bandwidth via volume respecting embeddings (extended abstract) , 1998, STOC '98.

[51]  Leslie G. Valiant,et al.  A neuroidal architecture for cognitive computation , 1998, ICALP.

[52]  Santosh S. Vempala,et al.  Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 1998, STOC '98.

[53]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[54]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[55]  L. Lovász,et al.  The Colin de Verdière graph parameter , 1999 .

[56]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[57]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[58]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[59]  Alan M. Frieze,et al.  Clustering in large graphs and matrices , 1999, SODA '99.

[60]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 2000, JACM.

[61]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[62]  Shai Ben-David,et al.  Limitations of Learning Via Embeddings in Euclidean Half Spaces , 2003, J. Mach. Learn. Res..

[63]  Uri Zwick,et al.  Coloring k-colorable graphs using smaller palettes , 2001, SODA '01.

[64]  Anna R. Karlin,et al.  Spectral analysis of data , 2001, STOC '01.

[65]  COMBINATORIAL APPROACHES TO MULTIFLOW PROBLEMS , 2001 .

[66]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[67]  Sariel Har-Peled A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[68]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[69]  Santosh S. Vempala,et al.  On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.

[70]  Santosh S. Vempala,et al.  A spectral algorithm for learning mixtures of distributions , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[71]  Flow Metrics , 2002, LATIN.

[72]  Piotr Indyk,et al.  Approximate clustering via core-sets , 2002, STOC '02.

[73]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[74]  Michael Langberg,et al.  Graphs with tiny vector chromatic numbers and huge chromatic numbers , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[75]  Ryan O'Donnell,et al.  Derandomized dimensionality reduction with applications , 2002, SODA '02.

[76]  Dan Roth,et al.  On generalization bounds, projection profile, and margin distribution , 2002, ICML.

[77]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[78]  S. Basu,et al.  Algorithmic and Quantitative Real Algebraic Geometry , 2003 .

[79]  Marek Karpinski,et al.  Approximation schemes for clustering problems , 2003, STOC '03.

[80]  Adam R. Klivans,et al.  Learning intersections and thresholds of halfspaces , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[81]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[82]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[83]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[84]  Rocco A. Servedio,et al.  Learning intersections of halfspaces with a margin , 2004, J. Comput. Syst. Sci..

[85]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[86]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[87]  Christos H. Papadimitriou,et al.  The NP-Completeness of the bandwidth minimization problem , 1976, Computing.

[88]  Santosh S. Vempala,et al.  An algorithmic theory of learning: Robust concepts and random projection , 1999, Machine Learning.

[89]  Piotr Indyk,et al.  Stable distributions, pseudorandom generators, embeddings, and data stream computation , 2006, JACM.

[90]  Mihalis Yannakakis,et al.  Primal-dual approximation algorithms for integral flow and multicut in trees , 1997, Algorithmica.