Power transition X filling based selective Huffman encoding technique for test-data compression and Scan Power Reduction for SOCs

Abstract Due to the excessive utilization of memory, data compression is an evergreen research topic. Realizing the constant demand of compression algorithms, this article presents a compression algorithm to analyse the digital VLSI circuits for constraint optimization, such as test data volume, switching power, chip area overhead and processing speed of testing. This article proposes a new power transition X filling based selective Huffman encoding technique, which achieves better data compression, switching power reduction, chip area overhead reduction and speed of testing. The performance of the proposed work is examined with the help of ISCAS benchmark circuits. Initially, the test set is occupied by using the power transition X filling technique to replace the don't care bits and the filled test set is further encoded by selective Huffman encoding technique. The experimental results show that the proposed power transition X filling based selective Huffman encoding gives effective results compared to the related data compression techniques with minimal time and memory consumption.

[1]  A.H. El-Maleh,et al.  Extended frequency-directed run-length code with improved application to system-on-a-chip test data compression , 2002, 9th International Conference on Electronics, Circuits and Systems.

[2]  Hans-Joachim Wunderlich,et al.  Reusing Scan Chains for Test Pattern Decompression , 2002, J. Electron. Test..

[3]  Atul K. Jain,et al.  Minimizing power consumption in scan testing: pattern generation and DFT techniques , 2004 .

[4]  Wenfa Zhan,et al.  A new scheme of test data compression based on equal-run-length coding (ERLC) , 2012, Integr..

[5]  Bashir M. Al-Hashimi,et al.  Variable-length input Huffman coding for system-on-a-chip test , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Aiman H. El-Maleh,et al.  A geometric-primitives-based compression scheme for testing systems-on-a-chip , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[7]  Jürgen Freudenberger,et al.  Efficient VLSI architecture for the parallel dictionary LZW data compression algorithm , 2019, IET Circuits Devices Syst..

[8]  Nur A. Touba,et al.  Reducing test data volume using LFSR reseeding with seed compression , 2002, Proceedings. International Test Conference.

[9]  Nur A. Touba,et al.  Reducing test data volume using external/LBIST hybrid test patterns , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[10]  Kun Guo,et al.  A Power Efficient Test Data Compression Method for SoC using Alternating Statistical Run-Length Coding , 2016, J. Electron. Test..

[11]  Nur A. Touba,et al.  Using an embedded processor for efficient deterministic testing of systems-on-a-chip , 1999, Proceedings 1999 IEEE International Conference on Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040).

[12]  David Bryan,et al.  Combinational profiles of sequential benchmark circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[13]  Emmanouil Kalligeros,et al.  Optimal Selective Huffman Coding for Test-Data Compression , 2007, IEEE Transactions on Computers.

[14]  Srinivasulu Tadisetty,et al.  A novel ortho normalized multi-stage discrete fast Stockwell transform based memory-aware high-speed VLSI implementation for image compression , 2018, Multimedia Tools and Applications.

[15]  Nur A. Touba,et al.  Hybrid BIST based on weighted pseudo-random testing: a new test resource partitioning scheme , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[16]  J.H. Patel,et al.  Test set compaction algorithms for combinational circuits , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[17]  Emmanouil Kalligeros,et al.  Multilevel-Huffman Test-Data Compression for IP Cores With Multiple Scan Chains , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Krishnendu Chakrabarty,et al.  A unified approach to reduce SOC test data volume, scan power and testing time , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Yun Pan,et al.  Method and VLSI implementation of lossy-to-lossless LTM ECG compression framework , 2019 .

[20]  K. Thilagavathi,et al.  Two-stage low power test data compression for digital VLSI circuits , 2018, Comput. Electr. Eng..

[21]  J. Raja Paul Perinbam,et al.  CSP-Filling: A New X-Filling Technique to Reduce Capture and Shift Power in Test Applications , 2012, 2012 International Symposium on Electronic System Design (ISED).

[22]  Nur A. Touba,et al.  An efficient test vector compression scheme using selective Huffman coding , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  V. Kamakoti,et al.  XStat: Statistical X-Filling Algorithm for Peak Capture Power Reduction in Scan Tests , 2014, J. Low Power Electron..

[24]  Krishnendu Chakrabarty,et al.  Test Data Compression and Test Resource Partitioning for System-on-a-Chip Using Frequency-Directed Run-Length (FDR) Codes , 2003, IEEE Trans. Computers.