Experiments in Concurrent Stochastic Simulation: The EcliPSe Paradigm

Abstract This paper presents results on the performance of a novel and flexible concurrent simulation environment known as EcliPSe . The paradigm we advocate is based on the premise that replication based simulations, either nondistributed or minimally distributed, yield excellent speedups. The approach used makes concurrent simulation easily accessible to researchers because its use does not require knowledge of parallel programming. The experiments we report include Monte Carlo type simulations (e.g., estimating integrals, order-statistics), Markov-chain simulations (hitting-times, distributed algorithms), and discrete-event simulation (e.g., tail probabilities in queues, FDDI token ring performance, and simulations of high performance software testing techniques on SIMD machines).

[1]  William E. Biles,et al.  Statistical considerations in simulation on a network of microcomputers , 1985, WSC '85.

[2]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[3]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[4]  Kishor S. Trivedi Probability and Statistics with Reliability, Queuing, and Computer Science Applications , 1984 .

[5]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Gordon Bell,et al.  The future of high performance computers in science and engineering , 1989, CACM.

[7]  Vernon Rego A Band and Bound Technique for Simple Random Algorithms , 1990, Performance.

[8]  R. M. Fujimoto,et al.  Parallel discrete event simulation , 1989, WSC '89.

[9]  M. H. MacDougall Simulating computer systems , 1987 .

[10]  D. Crevier,et al.  Volume estimation by monte carlo methods , 1989 .

[11]  J. G. Gay,et al.  Component placement in VLSI circuits using a constant pressure Monte Carlo method , 1985, Integr..

[12]  Alston S. Householder,et al.  Principles of Numerical Analysis , 1974 .

[13]  Geoffrey C. Fox Parallel Computing Comes of Age: Supercomputer Level Parallel Computations at Caltech , 1989, Concurr. Pract. Exp..

[14]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[15]  Terry Williams,et al.  Probability and Statistics with Reliability, Queueing and Computer Science Applications , 1983 .

[16]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[17]  J. R. Isaac,et al.  Design and analysis of parallel Monte Carlo algorithms , 1985, PPSC.

[18]  Allen D. Malony,et al.  Parallel discrete event simulation: a shared memory approach , 1987, SIGMETRICS '87.

[19]  Allen D. Malony,et al.  Parallel Discrete Event Simulation Using Shared Memory , 1988, IEEE Trans. Software Eng..

[20]  B. Schmeiser,et al.  Generation of the maximum (minimum) value in digital computer simulation , 1978 .

[21]  Michael T. Heath,et al.  Parallel Algorithms for Sparse Linear Systems , 1991, SIAM Rev..

[22]  D. L. Meier,et al.  A General Framework for Complex Time-Driven Simulations on Hypercubes , 1990, Proceedings of the Fifth Distributed Memory Computing Conference, 1990..

[23]  Vernon Rego,et al.  Exploiting Parallelism Across Program Execution: A Unification Technique and Its Analysis , 1990, IEEE Trans. Parallel Distributed Syst..

[24]  Anders Wallqvist,et al.  Exploiting Physical Parallelism Using Supercomputers: Two Examples from Chemical Physics , 1987, Computer.

[25]  Jean Walrand,et al.  A quick simulation method for excessive backlogs in networks of queues , 1989 .

[26]  M. Johnson,et al.  Proof that Timing Requirements of the FDDI Token Ring Protocol are Satisfied , 1987, IEEE Trans. Commun..

[27]  Vernon Rego,et al.  High Performance Software Testing on SIMD Machines , 1991, IEEE Trans. Software Eng..

[28]  Philip Heidelberger,et al.  Discrete event simulations and parallel processing: statistical properties , 1988 .

[29]  W. Bux Local-Area Subnetworks: A Performance Comparison , 1981, IEEE Trans. Commun..

[30]  P. Morse,et al.  Principles of Numerical Analysis , 1954 .

[31]  Boris D. Lubachevsky,et al.  Efficient distributed event driven simulations of multiple-loop networks , 1988, SIGMETRICS '88.

[32]  Micha Hofri,et al.  Probabilistic Analysis of Algorithms , 1987, Texts and Monographs in Computer Science.

[33]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[34]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[35]  P. J. Kuehn,et al.  Multiqueue systems with nonexhaustive cyclic service , 1979, The Bell System Technical Journal.

[36]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[37]  M. Neuts Some explicit formulas for the steady-state behavior of the queue with semi-Markovian service times , 1977, Advances in Applied Probability.

[38]  Timothy Alan Budd,et al.  Mutation analysis of program test data , 1980 .

[39]  Vernon Rego,et al.  EcliPse: A system for high performance concurrent simulation , 1991, Softw. Pract. Exp..

[40]  Michael A. Crane,et al.  Simulating Stable Stochastic Systems: III. Regenerative Processes and Discrete-Event Simulations , 1975, Oper. Res..

[41]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[42]  Edward D. Lazowska,et al.  Parallel simulation of queueing networks: limitations and potentials , 1989, SIGMETRICS '89.

[43]  Daniel Kahneman,et al.  Probabilistic reasoning , 1993 .

[44]  R.D. Chamberlain,et al.  Hierarchical discrete-event simulation on hypercube architectures , 1990, IEEE Micro.