Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization

[1]  Qiang Wang,et al.  Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting , 2005 .

[2]  J. Adam,et al.  Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis , 2005 .

[3]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[4]  K. Condie TTGs and adakites: Are they both slab melts? , 2005 .

[5]  R. Rudnick,et al.  Recycling lower continental crust in the North China craton , 2004, Nature.

[6]  Wei Xu,et al.  Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent , 2004 .

[7]  Z. Bai,et al.  Geochemistry and Petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the Associated Porphyry Copper‐Molybdenum Mineralization in Southeast Hubei, East China , 2004 .

[8]  Xiaoming Qu,et al.  Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet , 2004 .

[9]  Q. Zhang,et al.  Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet , 2003 .

[10]  C. Miller,et al.  Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance , 2003 .

[11]  R. Shinjo,et al.  Origin of mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? , 2002 .

[12]  W. Fan,et al.  Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts , 2002 .

[13]  C. Lo,et al.  Petrogenesis of the Mesozoic potash-rich volcanic rocks in the Luzong basin, Anhui Province: Geochemical constraints , 2002 .

[14]  J. Mungall Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits , 2002 .

[15]  R. Solidum,et al.  Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited , 2002 .

[16]  M. Tiepolo,et al.  Growth of early continental crust controlled by melting of amphibolite in subduction zones , 2002, Nature.

[17]  Alan J. Wilson,et al.  Porphyry gold–copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism , 2002 .

[18]  Y. Liu,et al.  U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China : Implications for the initial rifting of Rodinia , 2002 .

[19]  B. Frost,et al.  Crustal growth by magmatic underplating: Isotopic evidence from the northern Sherman batholith , 2001 .

[20]  Chen Yuwei,et al.  Lead isotope geochemistry of the urban environment in the Pearl River Delta , 2001 .

[21]  Marc J. Defant,et al.  Evidence suggests slab melting in arc magmas , 2001 .

[22]  X. M. Zhou,et al.  Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas , 2000 .

[23]  H. Wenk,et al.  Exhumation of the ultrahigh‐pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan‐Lu fault , 2000 .

[24]  Xian‐Hua Li Cretaceous magmatism and lithospheric extension in Southeast China , 2000 .

[25]  Barth,et al.  Rutile-bearing refractory eclogites: missing link between continents and depleted mantle , 2000, Science.

[26]  A. Soesoo Fractional crystallization of mantle‐derived melts as a mechanism for some I‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia , 2000, Journal of the Geological Society.

[27]  M. Norman,et al.  Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa , 1999 .

[28]  R. Schuster,et al.  Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis , 1999 .

[29]  R. Lange,et al.  Pliocene Potassic Magmas from the Kings River Region, Sierra Nevada, California: Evidence for Melting of a Subduction- Modified Mantle , 1999 .

[30]  R. Solidum,et al.  Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting , 1999 .

[31]  J. Saleeby,et al.  Crustal recycling beneath continental arcs: silica-rich glass inclusions in ultramafic xenoliths from the Sierra Nevada, California , 1998 .

[32]  R. Sillitoe,et al.  Characteristics and controls of the largest porphyry copper‐gold and epithermal gold deposits in the circum‐Pacific region , 1997 .

[33]  Turner,et al.  U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust , 1997, Science.

[34]  R. Kilian,et al.  Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone , 1996 .

[35]  M. Drummond,et al.  Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths , 1996 .

[36]  Shan Gao,et al.  Silurian-Devonian provenance changes of South Qinling basins: implications for accretion of the Yangtze (South China) to the North China cratons , 1995 .

[37]  J. Walshe,et al.  Endeavour 26 North; a porphyry copper-gold deposit in the Late Ordovician, shoshonitic Goonumbla volcanic complex, New South Wales, Australia , 1995 .

[38]  D. Groves,et al.  Potassic Igneous Rocks and Associated Gold-Copper Mineralization , 1995 .

[39]  T. Zhao,et al.  Mesozoic shoshonite series from Lishui in the Lower Yangtze region, China , 1994 .

[40]  E. M. Cameron,et al.  Carbonated, alkaline hybridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. , 1994 .

[41]  D. Wyman,et al.  Archean Shoshonitic Lamprophyres of the Abitibi Subprovince, Canada: Petrogenesis, Age, and Tectonic Setting , 1993 .

[42]  S. Hart,et al.  Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes☆ , 1993 .

[43]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[44]  N. Petford,et al.  Generation of sodium-rich magmas from newly underplated basaltic crust , 1993, Nature.

[45]  A. Peccerillo,et al.  Potassic and ultrapotassic magmas and their origin , 1992 .

[46]  R. Stewart,et al.  Dacite Genesis via both Slab Melting and Differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama , 1991 .

[47]  M. Drummond,et al.  A model for Trondhjemite‐Tonalite‐Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons , 1990 .

[48]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[49]  J. Meen Elevation of potassium content of basaltic magma by fractional crystallization: the effect of pressure , 1990 .

[50]  W. White,et al.  The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling , 1989 .

[51]  R. Stern,et al.  Shoshonitic volcanism in the Northern Mariana Arc: 1. Mineralogic and major and trace element characteristics , 1989 .

[52]  D. Wyman,et al.  Alkaline magmatism, major structures, and gold deposits; implications for greenstone belt gold metallogeny , 1988 .

[53]  J. Meen Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality , 1987 .

[54]  P. Jian,et al.  Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization , 2006 .

[55]  Z. Zhen Geochronology of Cretaceous A-type granitoids or alkaline intrusive rocks in the hinterland, South China: constraints for late-Mesozoic tectonic evolution. , 2005 .

[56]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[57]  L. Dun-yi SHRIMP Dating of Carbpniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust , 2003 .

[58]  Yigang Xu,et al.  Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism , 2001 .

[59]  W. Griffin,et al.  Genesis of Young Lithospheric Mantle in Southeastern China: an LAM–ICPMS Trace Element Study , 2000 .

[60]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[61]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[62]  S. Taylor,et al.  Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey , 1976 .