A posteriori error estimation and adaptive strategy for the control of MsFEM computations

Abstract We introduce quantitative and robust tools to control the numerical accuracy in simulations performed using the Multiscale Finite Element Method (MsFEM). First, we propose a guaranteed and fully computable a posteriori error estimate for the global error measured in the energy norm. It is based on dual analysis and the Constitutive Relation Error (CRE) concept, with recovery of equilibrated fluxes from the approximate MsFEM solution. Second, the estimate is split into several indicators, associated to the various MsFEM error sources, in order to drive an adaptive procedure. The overall strategy thus enables to automatically identify an appropriate trade-off between accuracy and computational cost in the MsFEM numerical simulations. Furthermore, the strategy is compatible with the offline/online paradigm of MsFEM. The performances of our approach are demonstrated in several numerical experiments.

[1]  Jacob Fish,et al.  Multiscale enrichment based on partition of unity , 2005 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[4]  Frédéric Legoll,et al.  An MsFEM Type Approach for Perforated Domains , 2013, Multiscale Model. Simul..

[5]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[6]  Ivo Babuška,et al.  A posteriori error estimation for generalized finite element methods , 2006 .

[7]  Fredrik Larsson,et al.  On two-scale adaptive FE analysis of micro-heterogeneous media with seamless scale-bridging , 2011 .

[8]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[9]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[10]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[11]  I. Babuska,et al.  The generalized finite element method , 2001 .

[12]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[13]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[14]  Pierre Ladevèze,et al.  An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses , 2011, Computational Mechanics.

[15]  Stéphane Bordas,et al.  Guaranteed error bounds in homogenisation: an optimum stochastic approach to preserve the numerical separation of scales , 2017 .

[16]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[17]  Martin Vohralík,et al.  Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..

[18]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[19]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[20]  Pedro Díez,et al.  Verifying Calculations - Forty Years On: An Overview of Classical Verification Techniques for FEM Simulations , 2015 .

[21]  Luc Tartar,et al.  The General Theory of Homogenization: A Personalized Introduction , 2009 .

[22]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[23]  S. Nicaise,et al.  An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems , 2007 .

[24]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[25]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[26]  X. Frank Xu,et al.  A multiscale stochastic finite element method on elliptic problems involving uncertainties , 2007 .

[27]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[28]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[29]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[30]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[31]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[32]  Pierre Ladevèze,et al.  Calculation of strict error bounds for finite element approximations of non‐linear pointwise quantities of interest , 2010 .

[33]  Ludovic Chamoin,et al.  On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.

[34]  J. N. Reddy,et al.  On dual-complementary variational principles in mathematical physics , 1974 .

[35]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[36]  Ben Schweizer,et al.  An Adaptive Multiscale Finite Element Method , 2014, Multiscale Model. Simul..

[37]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[38]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[39]  Pierre Ladevèze,et al.  A new non-intrusive technique for the construction of admissible stress fields in model verification , 2010 .

[40]  F. F. Ling,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2005 .

[41]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[42]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[43]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[44]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[45]  Pierre Ladevèze,et al.  New advances on a posteriori error on constitutive relation in f.e. analysis , 1997 .

[46]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[47]  B. M. Fraeijs de Veubeke,et al.  Dual analysis for heat conduction problems by finite elements , 1972 .

[48]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[49]  Luc Tartar,et al.  Calculus of Variations and Homogenization , 1997 .

[50]  Yalchin Efendiev,et al.  An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..

[51]  Eric Florentin,et al.  Evaluation of the local quality of stresses in 3D finite element analysis , 2002 .

[52]  Shun Zhang,et al.  High-Order Multiscale Finite Element Method for Elliptic Problems , 2014, Multiscale Model. Simul..

[53]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[54]  F. Legoll,et al.  Multiscale Finite Element approach for "weakly" random problems and related issues , 2011, 1111.1524.

[55]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[56]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[57]  Assyr Abdulle,et al.  A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .

[58]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[59]  Philippe Destuynder,et al.  Explicit error bounds for a nonconforming finite element method , 1998 .

[60]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[61]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[62]  Ivo Babuška,et al.  Assessment of the cost and accuracy of the generalized FEM , 2007 .