A posteriori error estimation and adaptive strategy for the control of MsFEM computations
暂无分享,去创建一个
[1] Jacob Fish,et al. Multiscale enrichment based on partition of unity , 2005 .
[2] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[3] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[4] Frédéric Legoll,et al. An MsFEM Type Approach for Perforated Domains , 2013, Multiscale Model. Simul..
[5] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[6] Ivo Babuška,et al. A posteriori error estimation for generalized finite element methods , 2006 .
[7] Fredrik Larsson,et al. On two-scale adaptive FE analysis of micro-heterogeneous media with seamless scale-bridging , 2011 .
[8] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[9] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[10] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[11] I. Babuska,et al. The generalized finite element method , 2001 .
[12] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[13] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[14] Pierre Ladevèze,et al. An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses , 2011, Computational Mechanics.
[15] Stéphane Bordas,et al. Guaranteed error bounds in homogenisation: an optimum stochastic approach to preserve the numerical separation of scales , 2017 .
[16] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[17] Martin Vohralík,et al. Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..
[18] Pierre Ladevèze,et al. A general method for recovering equilibrating element tractions , 1996 .
[19] B. Schrefler,et al. Multiscale Methods for Composites: A Review , 2009 .
[20] Pedro Díez,et al. Verifying Calculations - Forty Years On: An Overview of Classical Verification Techniques for FEM Simulations , 2015 .
[21] Luc Tartar,et al. The General Theory of Homogenization: A Personalized Introduction , 2009 .
[22] Thomas Y. Hou,et al. Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..
[23] S. Nicaise,et al. An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems , 2007 .
[24] I. Babuska,et al. Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .
[25] B. D. Veubeke. Displacement and equilibrium models in the finite element method , 1965 .
[26] X. Frank Xu,et al. A multiscale stochastic finite element method on elliptic problems involving uncertainties , 2007 .
[27] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[28] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[29] Assyr Abdulle,et al. Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .
[30] P. Suquet,et al. Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .
[31] F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .
[32] Pierre Ladevèze,et al. Calculation of strict error bounds for finite element approximations of non‐linear pointwise quantities of interest , 2010 .
[33] Ludovic Chamoin,et al. On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.
[34] J. N. Reddy,et al. On dual-complementary variational principles in mathematical physics , 1974 .
[35] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[36] Ben Schweizer,et al. An Adaptive Multiscale Finite Element Method , 2014, Multiscale Model. Simul..
[37] T. Hou,et al. Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .
[38] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[39] Pierre Ladevèze,et al. A new non-intrusive technique for the construction of admissible stress fields in model verification , 2010 .
[40] F. F. Ling,et al. Mastering Calculations in Linear and Nonlinear Mechanics , 2005 .
[41] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[42] Christoph Schwab,et al. High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.
[43] George Papanicolaou,et al. A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..
[44] T. Hou,et al. Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .
[45] Pierre Ladevèze,et al. New advances on a posteriori error on constitutive relation in f.e. analysis , 1997 .
[46] E Weinan,et al. Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .
[47] B. M. Fraeijs de Veubeke,et al. Dual analysis for heat conduction problems by finite elements , 1972 .
[48] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[49] Luc Tartar,et al. Calculus of Variations and Homogenization , 1997 .
[50] Yalchin Efendiev,et al. An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..
[51] Eric Florentin,et al. Evaluation of the local quality of stresses in 3D finite element analysis , 2002 .
[52] Shun Zhang,et al. High-Order Multiscale Finite Element Method for Elliptic Problems , 2014, Multiscale Model. Simul..
[53] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[54] F. Legoll,et al. Multiscale Finite Element approach for "weakly" random problems and related issues , 2011, 1111.1524.
[55] M. Larson,et al. Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .
[56] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[57] Assyr Abdulle,et al. A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .
[58] Daniel Peterseim,et al. Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..
[59] Philippe Destuynder,et al. Explicit error bounds for a nonconforming finite element method , 1998 .
[60] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[61] I. Babuska,et al. Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .
[62] Ivo Babuška,et al. Assessment of the cost and accuracy of the generalized FEM , 2007 .