Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows

[1] Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A “universal” granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [Dartevelle et al., 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).

[1]  D. Drew Mathematical Modeling of Two-Phase Flow , 1983 .

[2]  R. Sparks,et al.  Grain size variations in ignimbrites and implications for the transport of pyroclastic flows , 1976 .

[3]  A. Woods,et al.  On the formation of eruption columns following explosive mixing of magma and surface‐water , 1996 .

[4]  D. Koch,et al.  Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations , 1999, Journal of Fluid Mechanics.

[5]  W. B. VanderHeyden,et al.  Toward a General Theory for Multiphase Turbulence Part I: Development and Gauging of the Model Equations , 2000 .

[6]  M. Branney,et al.  A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite , 1992 .

[7]  A. Burgisser,et al.  Addressing complexity in laboratory experiments: the scaling of dilute multiphase flows in magmatic systems , 2005 .

[8]  A. Freundt,et al.  Pyroclastic flow transport mechanisms , 1998 .

[9]  Colin J. N. Wilson,et al.  The Taupo eruption, New Zealand I. General aspects , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  C. Moeng A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence , 1984 .

[11]  Stephen Self,et al.  Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height , 1992, Nature.

[12]  William R. Cotton,et al.  Cumulus Convection in Shear Flow—Three-Dimensional Numerical Experiments , 1978 .

[13]  S. Baloga,et al.  Sensitivity of buoyant plume heights to ambient atmospheric conditions: Implications for volcanic eruption columns , 1996 .

[14]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[15]  T. M. Knowlton,et al.  The importance of storage, transfer, and collection , 1994 .

[16]  S. Savage Instability of unbounded uniform granular shear flow , 1992, Journal of Fluid Mechanics.

[17]  A. Robock Volcanic eruptions and climate , 2000 .

[18]  S. Savage,et al.  The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials , 1986 .

[19]  G. Valentine Stratified flow in pyroclastic surges , 1987 .

[20]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  O. Simonin,et al.  On the spatial distribution of heavy-particle velocities in turbulent flow: from continuous field to particulate chaos , 2002 .

[22]  S. Ogawa,et al.  On the equations of fully fluidized granular materials , 1980 .

[23]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[24]  Causality violation of complex-characteristic two-phase flow equations , 1982 .

[25]  A. Freundt Formation of high-grade ignimbrites Part II. A pyroclastic suspension current model with implications also for low-grade ignimbrites , 1999 .

[26]  Andrew W. Woods,et al.  Moist convection and the injection of volcanic ash into the atmosphere , 1993 .

[27]  Augusto Neri,et al.  Numerical simulation of collapsing volcanic columns with particles of two sizes , 1996 .

[28]  G. Valentine Eruption column physics , 1997 .

[29]  J. Deardorff,et al.  On the magnitude of the subgrid scale eddy coefficient , 1971 .

[30]  G. Ernst,et al.  Origin of the Mount Pinatubo climactic eruption cloud: Implications for volcanic hazards and atmospheric impacts , 2002 .

[31]  A. Neri,et al.  Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling. I. Large-scale dynamics , 2002 .

[32]  S. Ergun Fluid flow through packed columns , 1952 .

[33]  Thomas Baron,et al.  Hydrodynamic Stability of a Fluidized Bed , 1965 .

[34]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[35]  Josette Bellan,et al.  Perspectives on Large Eddy Simulations for Sprays: Issues and Solutions , 2000 .

[36]  T. Gombosi Gaskinetic Theory: Elementary transport theory , 1994 .

[37]  R. Sparks,et al.  Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile , 2000 .

[38]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[39]  Lionel Wilson,et al.  Transport of atmospheric water vapor by volcanic eruption columns , 1997 .

[40]  P. Bradshaw,et al.  Turbulence Models and Their Application in Hydraulics. By W. RODI. International Association for Hydraulic Research, Delft, 1980. Paperback US $15. , 1983, Journal of Fluid Mechanics.

[41]  G. Homsy,et al.  Rayleigh-Taylor instabilities in fluidized beds , 1981 .

[42]  A. A. Bent,et al.  Numerical simulation of inelastic frictional spheres in simple shear flow , 1994, Journal of Fluid Mechanics.

[43]  P. Zehner,et al.  Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen , 1970 .

[44]  A. Woods,et al.  Particle recycling and oscillations of volcanic eruption columns , 2000 .

[45]  Clayton T. Crowe,et al.  Numerical models for two-phase turbulent flows , 1996 .

[46]  W. Cotton On Parameterization of Turbulent Transport in Cumulus Clouds , 1975 .

[47]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[48]  J. Brey,et al.  Kinetic Models for Granular Flow , 1999 .

[49]  Marcus I. Bursik,et al.  Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores) , 1992 .

[50]  R. Sparks,et al.  Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns , 1986 .

[51]  Syamlal A review of granular stress constitutive relations , 1987 .

[52]  John R. Grace,et al.  The viscosity of fluidized beds , 1970 .

[53]  P. Mason,et al.  Large-Eddy Simulation of the Convective Atmospheric Boundary Layer , 1989 .

[54]  R. Hill Introduction to Plasticity. Aris Phillips. Ronald Press Co., New York, 1956. 230 pp. Diagrams. $7. , 1956 .

[55]  E. Bruce Pitman,et al.  Stability of time dependent compressible granular flow in two dimensions , 1987 .

[56]  S. Savage Granular Flows at High Shear Rates , 1983 .

[57]  J. Green,et al.  The legacy of neglect in the US , 1994 .

[58]  Jam Hans Kuipers,et al.  Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed , 1993 .

[59]  A. A. Amsden,et al.  Numerical calculation of multiphase fluid flow , 1975 .

[60]  D. Lilly On the numerical simulation of buoyant convection , 1962 .

[61]  M. Massoudi,et al.  Kinetic theories of granular materials with applications to fluidized beds , 1989 .

[62]  R. W. Lyczkowski,et al.  Multiphase flow: models for nuclear, fossil, and biomass energy production , 1980 .

[63]  H. Jaeger,et al.  The Physics of Granular Materials , 1996 .

[64]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[65]  R. Jackson,et al.  Some Mathematical and Physical Aspects of Continuum Models for the Motion of Granular Materials , 1983 .

[66]  J. Davidson,et al.  On the Liquidlike Behavior of Fluidized Beds , 1977 .

[67]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  Donald L. Koch,et al.  Simple shear flows of dense gas-solid suspensions at finite Stokes numbers , 1996, Journal of Fluid Mechanics.

[69]  S. Drobniak,et al.  Coherent structures of free acoustically stimulated jet , 2002 .

[70]  J. Kuipers,et al.  Numerical calculation of wall‐to‐bed heat‐transfer coefficients in gas‐fluidized beds , 1992 .

[71]  T. Kajishima,et al.  Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions , 2001, Journal of Fluid Mechanics.

[72]  A. Woods,et al.  Dimensions and dynamics of co-ignimbrite eruption columns , 1991, Nature.

[73]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .

[74]  D. Gidaspow,et al.  A bubbling fluidization model using kinetic theory of granular flow , 1990 .

[75]  M. Rampino Volcanism, Climatic Change, and the Geologic Record , 1991 .

[76]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests , 2001 .

[77]  Jam Hans Kuipers,et al.  Hydrodynamic Modeling of Gas/Particle Flows in Riser Reactors , 1996 .

[78]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[79]  Douglas K. Lilly,et al.  Stratified Turbulence and the Mesoscale Variability of the Atmosphere , 1983 .

[80]  Dimitri Gidaspow,et al.  Fluidization in Two-Dimensional Beds with a Jet. 2. Hydrodynamic Modeling , 1983 .

[81]  R. S. J. Sparks,et al.  The dimensions and dynamics of volcanic eruption columns , 1986 .

[82]  D. Gunn Transfer of heat or mass to particles in fixed and fluidised beds , 1978 .

[83]  Guy T. Houlsby,et al.  The flow of granular materials—II Velocity distributions in slow flow , 1982 .

[84]  D. D. Gray,et al.  On the constitutive relation for frictional flow of granular materials: Topical report , 1988 .

[85]  Augusto Neri,et al.  NUMERICAL SIMULATION OF COLLAPSING VOLCANIC COLUMNS , 1993 .

[86]  S. Dartevelle,et al.  Numerical and granulometric approaches to geophysical granular flows , 2003 .

[87]  J. Jenkins,et al.  A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles , 1983, Journal of Fluid Mechanics.

[88]  K. G. Anderson,et al.  A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes , 1992, Journal of Fluid Mechanics.

[89]  A. Prosperetti Some Considerations on the Modeling of Disperse Multiphase Flows by Averaged Equations , 1999 .

[90]  B. Alder,et al.  Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres , 1960 .

[91]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[92]  Greg A. Valentine,et al.  Numerical models of Plinian eruption columns and pyroclastic flows , 1989 .

[93]  Ulrich Schumann,et al.  Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes , 1993 .

[94]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[95]  M. Syamlal,et al.  MFIX documentation theory guide , 1993 .

[96]  William I. Rose,et al.  Numerical modeling of geophysical granular flows: 2. Computer simulations of plinian clouds and pyroclastic flows and surges , 2004 .

[97]  Andrew W. Woods,et al.  The fluid dynamics and thermodynamics of eruption columns , 1988 .

[98]  Francis H. Harlow,et al.  Turbulence in multiphase flow , 1988 .

[99]  Dimitri Gidaspow,et al.  Equation of state and radial distribution functions of FCC particles in a CFB , 1998 .

[100]  Djamel Lakehal,et al.  On the modelling of multiphase turbulent flows for environmental and hydrodynamic applications , 2002 .

[101]  David G. Schaeffer,et al.  Instability in the evolution equations describing incompressible granular flow , 1987 .

[102]  S. Sundaresan,et al.  The role of meso-scale structures in rapid gas–solid flows , 2001, Journal of Fluid Mechanics.

[103]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[104]  Dimitri Gidaspow,et al.  Multiparticle simulation of collapsing volcanic columns and pyroclastic flow , 2003 .

[105]  G. Batchelor,et al.  A new theory of the instability of a uniform fluidized bed , 1988, Journal of Fluid Mechanics.