How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards

The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards.

[1]  Wilfried van Sark,et al.  Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy , 2001 .

[2]  R. Weissleder,et al.  Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging , 2002, European Radiology.

[3]  Li Li,et al.  The Development of Fluorescence Intensity Standards , 2001, Journal of research of the National Institute of Standards and Technology.

[4]  A Schwartz,et al.  Standardizing flow cytometry: a classification system of fluorescence standards used for flow cytometry. , 1998, Cytometry.

[5]  Vasilis Ntziachristos,et al.  Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Errata. , 2002, Optics letters.

[6]  A. Weeraratna,et al.  Gene Expression Profiling: From Microarrays to Medicine , 2004, Journal of Clinical Immunology.

[7]  Brian Herman,et al.  Quantitative Fluorescence Microscopy , 2000, Fluorescence Microscopy.

[8]  A. Thaer,et al.  A capillary fluorescence standard for microfluorometry * , 1970, Journal of microscopy.

[9]  W. Göhde,et al.  Individual Patient-Dependent Influence of Erythrocyte Lysing Procedures on Flow-Cytometric Analysis of Leukocyte Subpopulations , 2003, Transfusion Medicine and Hemotherapy.

[10]  J. Miller,et al.  Standards in Flourescence Spectrometry , 1981 .

[11]  Pack,et al.  Ce3+:Na+ pairs in CaF2 and SrF2: Absorption and laser-excitation spectroscopy, and the observation of hole burning. , 1989, Physical review. B, Condensed matter.

[12]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[13]  Raymond F. Chen,et al.  Measurements of Absolute Values in Biochemical Fluorescence Spectroscopy. , 1972, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[14]  A. Thiel,et al.  Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. , 1994, Nucleic acids research.

[15]  Rainer Haspel,et al.  Advanced industrial fluorescence metrology used for qualification of high quality optical materials , 2003, SPIE Optics + Photonics.

[16]  R. Velapoldi Liquid Standards in Fluorescence Spectrometry , 1987 .

[17]  M. C. Goldberg Luminescence applications in biological, chemical, environmental, and hydrological sciences , 1989 .

[18]  Melody V. Smith,et al.  An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry. , 2002, Analytical Chemistry.

[19]  C. Christensen Arrays in biological and chemical analysis. , 2002, Talanta.

[20]  J. Bienvenu,et al.  Analytical requirements for measuring monocytic human lymphocyte antigen DR by flow cytometry: application to the monitoring of patients with septic shock. , 2002, Clinical chemistry.

[21]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[22]  Anthony J. Durkin,et al.  In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration. , 2003, Applied optics.

[23]  W. Gellermann Color center lasers , 1991 .

[24]  W. M. Peterson,et al.  THE MEASUREMENT OF SENSITIVITY IN FLUORESCENCE SPECTROSCOPY , 1994 .

[25]  D. Pinkel,et al.  Introduction to fluorescence in situ hybridization : principles and clinical applications , 1999 .

[26]  J. Ploem,et al.  Quantitative immunofluorescence , 2004, Histochemie.

[27]  F. S. Cohen,et al.  Radiometric calibration of a video fluorescence microscope for the quantitative imaging of resonance energy transfer , 1995 .

[28]  David R. Walt,et al.  Fluorescence-based nucleic acid detection and microarrays , 2002 .

[29]  Jason E. Stewart,et al.  Design and implementation of microarray gene expression markup language (MAGE-ML) , 2002, Genome Biology.

[30]  M. Pirrung How to make a DNA chip. , 2002, Angewandte Chemie.

[31]  Stephen A. Wise,et al.  Determination of polycyclic aromatic hydrocarbons by liquid chromatography , 1993 .

[32]  M Schena,et al.  Fluorescence-based expression monitoring using microarrays. , 1999, Methods in enzymology.

[33]  A. Schwartz,et al.  Applications of common quantitative fluorescent standards to multiple platforms: Comparison of commercial fluorescent calibration standards used in quantitative flow cytometry immunophenotyping analysis as a function of pH environment , 1997 .

[34]  Ian T. Young The Use Of Digital Image Processing Techniques For The Calibration Of Quantitative Microscopes , 1983, Other Conferences.

[35]  E. Iso,et al.  Measurement Uncertainty and Probability: Guide to the Expression of Uncertainty in Measurement , 1995 .

[36]  Axel Dr. Engel,et al.  CaF2 for DUV lens fabrication: basic material properties and dynamic light-matter interaction , 2004, SPIE Advanced Lithography.

[37]  D. Webb,et al.  Photoluminescence of solutions , 1969 .

[38]  E. Sevick-Muraca,et al.  Quantitative optical spectroscopy for tissue diagnosis. , 1996, Annual review of physical chemistry.

[39]  Minutes,et al.  MOLECULAR IMAGING IN DRUG DISCOVERY AND DEVELOPMENT , 2003 .

[40]  Atul Butte,et al.  The use and analysis of microarray data , 2002, Nature Reviews Drug Discovery.

[41]  K. T. Moesta,et al.  Protoporphyrin IX occurs naturally in colorectal cancers and their metastases. , 2001, Cancer research.

[42]  R. A. Velapoldi,et al.  Fluorescence standard reference material: quinine sulfate dihydrate. , 1981, Applied optics.

[43]  W. Semmler,et al.  Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands , 2001, Nature Biotechnology.

[44]  O. Soares,et al.  Spectrophotometers intercomparison for spectrocolorimetric scale harmonization , 1999 .

[45]  B. Wilson,et al.  In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications , 1998, Photochemistry and photobiology.

[46]  Jeff W. Lichtman,et al.  A quantitative fluorescence-imaging technique for studying acetylcholine receptor turnover at neuromuscular junctions in living animals , 1996, Journal of Neuroscience Methods.

[47]  D. Cavalieri,et al.  Fundamentals of cDNA microarray data analysis. , 2003, Trends in genetics : TIG.

[48]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  U. Haupts,et al.  Homogeneous fluorescence readouts for miniaturized high-throughput screening: theory and practice. , 1999, Drug discovery today.

[50]  H. Rinneberg,et al.  Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. , 1996, Physics in medicine and biology.

[51]  S. Lockett,et al.  Quantitative precision of an automated, fluorescence-based image cytometer. , 1992, Analytical and quantitative cytology and histology.

[52]  Edward Early,et al.  Quantitating Fluorescence Intensity from Fluorophore: The Definition of MESF Assignment , 2002, Journal of research of the National Institute of Standards and Technology.

[53]  K. Miura,et al.  Quantitative assessment of DNA microarrays--comparison with Northern blot analyses. , 2001, Genomics.

[54]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[55]  Alan S. Waggoner,et al.  Multiple spectral parameter imaging in quantitative fluorescence microscopy. I: Quantitation of bead standards. , 1989, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[56]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[57]  Joseph R. Lakowicz,et al.  Introduction to Fluorescence , 1983 .

[58]  Ignacy Gryczynski,et al.  Fluorescence polarization standards for high-throughput screening and imaging. , 2002, BioTechniques.

[59]  Fluorescence Spectrometry in Analytical Chemistry and Color Science , 1987 .

[60]  A. Periasamy,et al.  Fluorescence Lifetime Imaging Microscopy (FLIM): Instrumentation and Applications , 1992 .

[61]  U. Resch-Genger,et al.  Traceability in Fluorometry—Part I: Physical Standards , 2005, Journal of Fluorescence.

[62]  J. Verhoeven,et al.  Glossary of terms used in photochemistry (IUPAC Recommendations 1996) , 1996 .

[63]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[64]  K. D. Mielenz,et al.  Polarization effects on fluorescence measurements , 1976 .

[65]  U J Balis,et al.  The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. , 1997, BioTechniques.

[66]  M. Schena,et al.  Overview of DNA chip technology , 1999, Molecular breeding.

[67]  J. Bigger,et al.  NEW DRUGS. , 1979, Canadian Medical Association journal.

[68]  Vasilis Ntziachristos,et al.  Would near-infrared fluorescence signals propagate through large human organs for clinical studies? , 2002, Optics letters.

[69]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[70]  John Aach,et al.  Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Jeremy M Lerner,et al.  Calibration and validation of confocal spectral imaging systems , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[72]  J. Miller,et al.  Standards in fluorescence spectrometry , 1981 .

[73]  H. Garner,et al.  Toward a universal standard: comparing two methods for standardizing spotted microarray data. , 2002, BioTechniques.

[74]  J. Sisken Chapter 4 Fluorescent Standards , 1989 .

[75]  Pierre Puget,et al.  A new generation of scanners for DNA chips. , 2002, Biosensors & bioelectronics.

[76]  J. Barton,et al.  DESIGN NOTE: Calibration of an optical fluorescence method for film thickness measurement , 2001 .

[77]  D. Kaplan,et al.  Characterization of instrumentation and calibrators for quantitative microfluorometry for immunofluorescence tests , 1989, Journal of clinical microbiology.

[78]  Denis Martin,et al.  Improved model for improving the inter-instrument agreement of spectrocolorimeters , 1999 .

[79]  Vasilis Ntziachristos,et al.  Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[80]  David Botstein,et al.  The Stanford Microarray Database: data access and quality assessment tools , 2003, Nucleic Acids Res..

[81]  R. Hetzer,et al.  Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients , 2003, Cytometry. Part B, Clinical cytometry.

[82]  J. W. Hofstraat,et al.  Correction of Fluorescence Spectra , 1994 .

[83]  W. T. Mason,et al.  Fluorescent and luminescent probes for biological activity : a practical guide to technology for quantitative real-time analysis , 1993 .

[84]  P. W. Stevens,et al.  Imaging and analysis of immobilized particle arrays. , 2003, Analytical chemistry.

[85]  M. Model,et al.  A standard for calibration and shading correction of a fluorescence microscope. , 2001, Cytometry.

[86]  J. Travis,et al.  Inorganic ion‐doped glass fibres as microspectrofluorimetric standards , 1975 .

[87]  K. Rurack,et al.  Traceability in Fluorometry: Part II. Spectral Fluorescence Standards , 2005, Journal of Fluorescence.

[88]  J. Eastman Standardization of fluorescence spectra and the calibration of spectrofluorimeters. , 1966, Applied optics.

[89]  J. S. Hayden,et al.  Fluorescence Spectroscopy of Color Centers Generated in Phosphate Glasses after Exposure to Femtosecond Laser Pulses , 2004 .

[90]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[91]  F. Scherbaum,et al.  Aqueous Solutions of Uranium(VI) as Studied by Time-Resolved Emission Spectroscopy: A Round-Robin Test , 2003, Applied spectroscopy.

[92]  E Fernández-Repollet,et al.  Quantification of EGFP expression on Molt‐4 T cells using calibration standards , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[93]  P. Ghazal,et al.  Experiments using microarray technology: limitations and standard operating procedures. , 2003, The Journal of endocrinology.

[94]  A. Waggoner,et al.  Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes. , 1997, Nucleic acids research.

[95]  J. P. van Dalen,et al.  Quantification in immunofluorescence microscopy. A new standard for fluorescein and rhodamine emission measurement. , 1974, Journal of immunological methods.

[96]  M S Patterson,et al.  Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media. , 1997, Applied optics.

[97]  M. Maroncelli,et al.  Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy , 1998 .

[98]  John Quackenbush,et al.  Universal RNA reference materials for gene expression. , 2004, Clinical chemistry.

[99]  Y. Khoroshaylo,et al.  Colorimetry , 2020, Proceedings of CAOL 2005. Second International Conference on Advanced Optoelectronics and Lasers, 2005..

[100]  Lili Wang,et al.  Formalization of the MESF unit of fluorescence intensity , 2004, Cytometry. Part B, Clinical cytometry.

[101]  J. Sisken Fluorescent standards. , 1989, Methods in cell biology.

[102]  D. Murphy Fundamentals of Light Microscopy and Electronic Imaging , 2001 .

[103]  Guidel Ines,et al.  Expression profiling — best practices for data generation and interpretation in clinical trials , 2004, Nature Reviews Genetics.

[104]  F. Bertucci,et al.  Expression profiling: DNA arrays in many guises. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[105]  Hideo Hosono,et al.  Time-resolved photoluminescence for diagnosis of resistance to ArF excimer laser damage to CaF 2 single crystals , 1999 .

[106]  D. F. Eaton,et al.  International Union of Pure and Applied Chemistry Organic Chemistry Division Commission on Photochemistry. Reference materials for fluorescence measurement. , 1988, Journal of photochemistry and photobiology. B, Biology.

[107]  Workshop “Bioanalytical and Biomedical Applications of Fluorescence Techniques: Instrument Characterization and Validation, Traceability and Need for Reference Materials” , 2004, Journal of Fluorescence.

[108]  P. Brown,et al.  DNA arrays for analysis of gene expression. , 1999, Methods in enzymology.

[109]  D Nolte,et al.  Time gated fluorescence spectroscopy in Barrett’s oesophagus , 2003, Gut.

[110]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[111]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[112]  D Barnett,et al.  Flow cytometric quantitation of immunofluorescence intensity: problems and perspectives. European Working Group on Clinical Cell Analysis. , 1998, Cytometry.

[113]  A Schwartz,et al.  Development of Clinical Standards for Flow Cytometry , 1993, Annals of the New York Academy of Sciences.

[114]  K. Licha Contrast Agents for Optical Imaging , 2002 .

[115]  S. Terakawa Video Microscopy , 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[116]  A Buckpitt,et al.  Development of a toxicological gene array and quantitative assessment of this technology. , 2000, Archives of biochemistry and biophysics.