Global estimates of lunar iron and titanium contents from the Chang' E‐1 IIM data

[1] Until recently, global high spatial resolution maps of FeO and TiO2 of the Moon were only derived from Clementine data. In this study, we show global maps of FeO and TiO2 using Chang'E-1 Interference Imaging Spectrometer (IIM) at a spatial resolution of 200 m/pixel. With a newly developed calibration presented here, spectra obtained by IIM compare well with telescopic spectra. Spectral parameters previously shown to be sensitive to iron and titanium, derived from the calibrated IIM data are highly correlated with the measured elemental concentration with R2 = 0.96 for FeO and 0.95 for TiO2. The maps were developed using this calibration. Histograms of basalt FeO estimates have a negatively skewed distribution, while TiO2 distributions are unimodal. They also revealed that the lunar highland crust is relatively uniform on the quadrant scale (several hundred to thousand kilometers scale) but inhomogenous on the global scale. The area of highest elevation of the Moon has very low FeO and TiO2 raising the question about South Pole-Aitken (SPA) (whether its ejecta deposits covered the highest elevation and when it was formed). Although the average FeO and TiO2 abundances for basalts are highly correlated, local areas of elevated iron can be associated with both high and low titanium.

[1]  Chunlai Li,et al.  Preliminary results of TiO2 mapping using Imaging Interferometer data from Chang’E-1 , 2011 .

[2]  Xia Zhang,et al.  A preliminary experience in the use of Chang’E-1 IIM data , 2010 .

[3]  Erwan Mazarico,et al.  Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations , 2010, Science.

[4]  Wei Zuo,et al.  The global image of the Moon obtained by the Chang’E-1: Data processing and lunar cartography , 2010 .

[5]  Ling Zhang,et al.  Preliminary Results of Mapping Iron Abundance from Chang'e-1 IIM Data , 2010 .

[6]  Jianfeng Cao,et al.  Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter , 2009 .

[7]  Chunlai Li,et al.  Quantification of the chemical composition of lunar soil in terms of its reflectance spectra by PCA and SVM , 2009 .

[8]  Akira Iwasaki,et al.  Long-Lived Volcanism on the Lunar Farside Revealed by SELENE Terrain Camera , 2009, Science.

[9]  Tsuneo Matsunaga,et al.  Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler , 2008 .

[10]  Tim Williams,et al.  Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array. , 2008, Applied optics.

[11]  Tim Williams,et al.  High-performance Sagnac interferometer using uncooled detectors for infrared hyperspectral applications , 2007, SPIE Defense + Commercial Sensing.

[12]  Thomas H. Prettyman,et al.  Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .

[13]  Lin Li Partial least squares modeling to quantify lunar soil composition with hyperspectral reflectance measurements , 2006 .

[14]  R. Korotev,et al.  Lunar surface geochemistry: Global concentrations of Th, K, and FeO , 2004 .

[15]  J. J. Gillis,et al.  Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust , 2003 .

[16]  G. J. Taylor,et al.  Distribution and modes of occurrence of lunar anorthosite , 2003 .

[17]  R. C. Elphic,et al.  A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations , 2003 .

[18]  Paul G. Lucey,et al.  Iron abundances on the lunar surface as measured by the Lunar Prospector gamma‐ray and neutron spectrometers , 2002 .

[19]  Paul G. Lucey,et al.  Lunar Prospector neutron spectrometer constraints on TiO2 , 2002 .

[20]  Carle M. Pieters,et al.  Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra , 2002 .

[21]  Thomas R. Caudill,et al.  MightySat II.1 hyperspectral imager: summary of on-orbit performance , 2002, SPIE Optics + Photonics.

[22]  Paul G. Lucey,et al.  Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images , 2000 .

[23]  Patrick Pinet,et al.  Discrimination between maturity and composition of lunar soils from integrated Clementine UV‐visible/near‐infrared data: Application to the Aristarchus Plateau , 2000 .

[24]  Paul G. Lucey,et al.  The titanium contents of lunar mare basalts , 2000 .

[25]  Bonnie J. Buratti,et al.  Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis camera , 1999 .

[26]  Carle M. Pieters,et al.  Mineralogy of the lunar crust: Results from Clementine , 1999 .

[27]  Paul G. Lucey,et al.  Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery , 1998 .

[28]  Paul G. Lucey,et al.  Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques , 1997 .

[29]  W H Smith,et al.  Digital array scanned interferometer: sensors and results. , 1996, Applied optics.

[30]  G. J. Taylor,et al.  Abundance and Distribution of Iron on the Moon , 1995, Science.

[31]  Bruce Rafert,et al.  Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations , 1994, Astronomical Telescopes and Instrumentation.

[32]  Wm. Hayden Smith,et al.  Digital array scanned interferometers for astronomy , 1990 .

[33]  R. Jaumann,et al.  Spectral Reflectance Studies of TYCHO Crater: Preliminary Results , 1986 .

[34]  S Kawata,et al.  Fourier transform spectrometer with a self-scanning photodiode array. , 1984, Applied optics.

[35]  杨建峰 Yang Jianfeng,et al.  Calibration of Chang′E-1 Satellite Interference Imaging Spectrometer , 2010 .

[36]  Xue Bin,et al.  Optical Design and On-orbit Performance Evaluation of The Imaging Spectrometer for Chang'e-1 Lunar Satellite , 2009 .

[37]  Bruce A. Campbell,et al.  Understanding the Lunar Surface and Space-Moon Interactions , 2006 .

[38]  R. Glenn Sellar,et al.  The high efficiency hyperspectral imager - A new instrument for measurements of the arctic surface , 2005 .

[39]  O. Faix,et al.  Fourier Transform Infrared Spectroscopy , 1992 .