Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves

We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, deterministic and unlike many current methods, requires no change-point or window size assumptions. We model R as a flexible, hidden Markov state process and exactly solve forward-backward algorithms, to derive R estimates that incorporate all available incidence information. This unifies and extends two popular methods, EpiEstim, which considers past incidence, and the Wallinga-Teunis method, which looks forward in time. This combination of maximising information and minimising assumptions, makes EpiFilter more statistically robust in periods of low incidence, where existing methods can struggle. As a result, we find EpiFilter to be particularly suited for assessing the risk of second waves of infection, in real time.

[1]  Glenn Vinnicombe,et al.  Point process analysis of noise in early invertebrate vision , 2017, PLoS Comput. Biol..

[2]  Kris Parag,et al.  Exact Bayesian inference for phylogenetic birth‐death models , 2018, Bioinform..

[3]  L. Allen,et al.  A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis , 2017, Infectious Disease Modelling.

[4]  Sebastian Funk,et al.  Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15 , 2017, bioRxiv.

[5]  Mikiko Senga,et al.  Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections. , 2014, The New England journal of medicine.

[6]  Chieh-Hsi Wu,et al.  Are Skyline Plot-Based Demographic Estimates Overly Dependent on Smoothing Prior Assumptions? , 2020, bioRxiv.

[7]  M. Lipsitch,et al.  How generation intervals shape the relationship between growth rates and reproductive numbers , 2007, Proceedings of the Royal Society B: Biological Sciences.

[8]  T. Stadler,et al.  Practical considerations for measuring the effective reproductive number, Rt , 2020, medRxiv.

[9]  S. Riley,et al.  Five challenges for stochastic epidemic models involving global transmission , 2014, Epidemics.

[10]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[11]  Wes Hinsley,et al.  A simple approach to measure transmissibility and forecast incidence , 2017, Epidemics.

[12]  S. Cauchemez,et al.  Estimating in real time the efficacy of measures to control emerging communicable diseases. , 2006, American journal of epidemiology.

[13]  Xavier Didelot,et al.  Modeling the Growth and Decline of Pathogen Effective Population Size Provides Insight into Epidemic Dynamics and Drivers of Antimicrobial Resistance , 2017, bioRxiv.

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  M. Roser,et al.  Coronavirus Pandemic (COVID-19) , 2020 .

[16]  Kris V Parag,et al.  Using information theory to optimise epidemic models for real-time prediction and estimation , 2020, PLoS Comput. Biol..

[17]  S. Bhatt,et al.  Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe , 2020, Nature.

[18]  Gerardo Chowell,et al.  The Effective Reproduction Number as a Prelude to Statistical Estimation of Time-Dependent Epidemic Trends , 2009, Mathematical and Statistical Estimation Approaches in Epidemiology.

[19]  W. H. Frost,et al.  Influenza in Maryland: Preliminary Statistics of Certain Localities , 1919 .

[20]  Heinz Koeppl,et al.  Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments , 2014, PLoS Comput. Biol..

[21]  Christl A. Donnelly,et al.  A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making , 2015, Scientific Data.

[22]  Christl A. Donnelly,et al.  Adaptive Estimation for Epidemic Renewal and Phylogenetic Skyline Models , 2019, bioRxiv.

[23]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[24]  Simon Cauchemez,et al.  Measuring the path toward malaria elimination , 2014, Science.

[25]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[26]  C. E. WHO Coronavirus Disease (COVID-19) Dashboard , 2020 .

[27]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[28]  T. Rothenberg Identification in Parametric Models , 1971 .

[29]  Tangchun Wu,et al.  Reconstruction of the full transmission dynamics of COVID-19 in Wuhan , 2020, Nature.

[30]  Lauren H. K. Chappell,et al.  Key questions for modelling COVID-19 exit strategies , 2020, Proceedings of the Royal Society B.

[31]  Chen Shen,et al.  ข้อสรุปจากบทความ “ผลของมาตรการที่ไม่ใช่ยาในการลดอัตราการตายและความต้องการทรัพยาการทาง สาธารณสุขเนื่องจากโรคโควิด-19” โดย Neil Ferguson และคณะ Review of Ferguson et al ”Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.” , 2020 .

[32]  C. Fraser,et al.  A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics , 2013, American journal of epidemiology.

[33]  Kris V Parag,et al.  Optimal Point Process Filtering and Estimation of the Coalescent Process , 2015, bioRxiv.

[34]  J. Wallinga,et al.  Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures , 2004, American journal of epidemiology.

[35]  Brian D. O. Anderson,et al.  Smoothing algorithms for nonlinear finite-dimensional systems , 1983 .

[36]  K. V. Parag,et al.  An exact method for quantifying the reliability of end-of-epidemic declarations in real time , 2020, medRxiv.

[37]  Vladimir N. Minin,et al.  Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories , 2018, Biometrics.

[38]  Sophie Cousins,et al.  New Zealand eliminates COVID-19 , 2020, The Lancet.

[39]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.