Effects of Heat Treatment on Microstructure and Tensile Properties of a Fe-27Mn-12Al-0.8C Low-Density Steel

[1]  Kyung-Tae Park,et al.  Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature , 2013 .

[2]  D. Suh,et al.  Microstructure and Tensile Behavior of Duplex Low-Density Steel Containing 5 mass% Aluminum , 2013 .

[3]  C. Liu,et al.  Low-density low-carbon Fe–Al ferritic steels , 2013 .

[4]  D. Suh,et al.  Low-density steels , 2013 .

[5]  D. Raabe,et al.  Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low , 2013 .

[6]  C. G. Park,et al.  Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C allo , 2013 .

[7]  Dong-Woo Suh,et al.  Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties , 2013, Science and technology of advanced materials.

[8]  Kyung-Tae Park,et al.  Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight , 2011 .

[9]  V. Kuokkala,et al.  Thermodynamic modeling of the stacking fault energy of austenitic steels , 2011 .

[10]  Kyung-Tae Park,et al.  Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition , 2010 .

[11]  Kyung-Tae Park,et al.  On the transitions of deformation modes of fully austenitic steels at room temperature , 2010 .

[12]  U. Prahl,et al.  Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels , 2009 .

[13]  Georg Frommeyer,et al.  Microstructures and Mechanical Properties of High‐Strength Fe‐Mn‐Al‐C Light‐Weight TRIPLEX Steels , 2006 .

[14]  W. Cheng,et al.  Observing the D03 phase in Fe–Mn–Al alloys , 2002 .

[15]  Jong-Woo Park Anomalous yield behavior of hypo- and hyper-stoichiometric Fe3Al intermetallic compounds , 2002 .

[16]  Y. Lin Structures and superparamagnetic properties of overaged Fe–Al–Mn–C alloys , 1999 .

[17]  H. Terashima,et al.  Effect of APB type on tensile properties of Cr added Fe3Al with D03 structure , 1995 .

[18]  Y. Mutoh,et al.  Effects of chromium addition on the sustained-load cracking characteristics of gamma-base titanium aluminides , 1995 .

[19]  I. Baker A review of the mechanical properties of B2 compounds , 1995 .

[20]  C. Chou,et al.  D03 - B2 - α phase transition in an Fe-Mn-Al-C weldment , 1993 .

[21]  Tzeng-Feng Liu,et al.  Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy , 1993 .

[22]  Tzeng-Feng Liu,et al.  Grain boundary precipitation in an Fe-7.8Al-31.7Mn-0.54C alloy , 1993 .

[23]  C. C. Wu,et al.  Phase transformation in an Fe-10.1Al-28.6Mn-0.46C alloy , 1991 .

[24]  H. Karnthaler,et al.  On the origin of planar slip in f.c.c. alloys , 1989 .

[25]  W. Choo,et al.  TEM evidence of modulated structure in FeMnAlC austenitic alloys , 1986 .

[26]  H. Leamy,et al.  Analysis of Dislocation Loops in Superlattices , 1967, November 1.

[27]  T. L. Johnston,et al.  Slip character and the ductile to brittle transition of single-phase solids , 1965 .

[28]  R. G. Davies,et al.  The plastic deformation of ordered FeCo and Fe3 Al alloys , 1964 .

[29]  M. Marcinkowski,et al.  Direct Observation of Antiphase Boundaries in the Fe3Al Superlattice , 1962 .

[30]  M. Marcinkowski,et al.  Theory and direct observation of dislocations in the Fe3Al superlattices , 1961 .

[31]  R. M. Fisher,et al.  Dislocation configurations in AuCu3 and AuCu type superlattices , 1961 .