Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics

Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags (‘barcodes’). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three ‘bait’ sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species ‘barcodes’ that currently use the cox1 gene only.

[1]  Patrick J. Biggs,et al.  Index-Free De Novo Assembly and Deconvolution of Mixed Mitochondrial Genomes , 2010, Genome biology and evolution.

[2]  Michael F. Whiting,et al.  Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda) , 2004, Cladistics : the international journal of the Willi Hennig Society.

[3]  A. Beckenbach,et al.  Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. , 2003, Molecular phylogenetics and evolution.

[4]  Nathan C. Sheffield,et al.  Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. , 2009, Systematic biology.

[5]  Paul D. Shaw,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[6]  Min Jee Kim,et al.  Complete mitogenome sequence of the jewel beetle, Chrysochroa fulgidissima (Coleoptera: Buprestidae) , 2009, Mitochondrial DNA.

[7]  G. Giribet,et al.  TNT: Tree Analysis Using New Technology , 2005 .

[8]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[9]  Robin B. Gasser,et al.  An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes , 2009, Nucleic acids research.

[10]  Anders F. Andersson,et al.  Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing , 2008, PloS one.

[11]  R DeSalle,et al.  Multiple sources of character information and the phylogeny of Hawaiian drosophilids. , 1997, Systematic biology.

[12]  M. Martindale,et al.  Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.

[13]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[14]  Nathan C. Sheffield,et al.  A Comparative Analysis of Mitochondrial Genomes in Coleoptera (Arthropoda: Insecta) and Genome Descriptions of Six New Beetles , 2008, Molecular biology and evolution.

[15]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[16]  Susan M. Huse,et al.  Microbial diversity in the deep sea and the underexplored “rare biosphere” , 2006, Proceedings of the National Academy of Sciences.

[17]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[18]  T. Hunt,et al.  A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation , 2007, Science.

[19]  R. Roehrdanz,et al.  Long Sections of Mitochondrial Dna Amplified from Fourteen Orders of Insects Using Conserved Polymerase Chain Reaction Primers , 1998 .

[20]  B. Lang,et al.  Mitochondrial evolution. , 1999, Science.

[21]  Daniel H. Huson,et al.  MetaSim—A Sequencing Simulator for Genomics and Metagenomics , 2008, PloS one.

[22]  M. Ronaghi,et al.  A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing , 2007, Nucleic acids research.

[23]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[24]  Y. Ohmiya,et al.  Mitochondrial genome sequence of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae): mitochondrial genes utility to investigate the evolutionary history of Coleoptera and its bioluminescence. , 2007, Gene.

[25]  Olaf R. P. Bininda-Emonds,et al.  transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences , 2005, BMC Bioinformatics.

[26]  T. Hunt,et al.  Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny , 2007 .

[27]  Jonathan P. Bollback,et al.  The Use of Coded PCR Primers Enables High-Throughput Sequencing of Multiple Homolog Amplification Products by 454 Parallel Sequencing , 2007, PloS one.

[28]  B. Jin,et al.  The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. , 2004, Molecular phylogenetics and evolution.

[29]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[30]  Alfried P Vogler,et al.  Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). , 2006, Molecular biology and evolution.

[31]  M. Friedrich,et al.  Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. , 2003, Molecular phylogenetics and evolution.

[32]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[33]  J. Bertranpetit,et al.  Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. , 2010, Molecular phylogenetics and evolution.

[34]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[35]  A. Vogler,et al.  Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. , 2010, Molecular phylogenetics and evolution.

[36]  Christian Hennig,et al.  Biotic element analysis in biogeography. , 2003, Systematic biology.

[37]  Marc A Suchard,et al.  A nonparametric method for accommodating and testing across-site rate variation. , 2007, Systematic biology.

[38]  M. Whiting,et al.  A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision , 2007 .

[39]  G. Hannon,et al.  DNA Sudoku--harnessing high-throughput sequencing for multiplexed specimen analysis. , 2009, Genome research.

[40]  Gabor T. Marth,et al.  EagleView: a genome assembly viewer for next-generation sequencing technologies. , 2008, Genome research.

[41]  R. A. Crowson The natural classification of the families of coleoptera , 1955 .

[42]  I. Agnarsson,et al.  The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. , 2008, Molecular phylogenetics and evolution.

[43]  C. Simon,et al.  Simple, Efficient, and Nondestructive DNA Extraction Protocol for Arthropods , 1995 .

[44]  Y. Ohmiya,et al.  Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). , 2007, Gene.

[45]  Ralf Hofestädt,et al.  Computer Science and Biology , 1997 .

[46]  B. Lang,et al.  Mitochondrial Evolution , 1999 .

[47]  Thomas Ludwig,et al.  A fast program for maximum likelihood-based inference of large phylogenetic trees , 2004, SAC '04.

[48]  Richard Cronn,et al.  Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes , 2009, BMC Biology.

[49]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[50]  G. Hojunson When phylogenetic assumptions are violated : base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics , 2010 .

[51]  J. Boore,et al.  Hexapod Origins: Monophyletic or Paraphyletic? , 2003, Science.

[52]  M. Whiting,et al.  Mitochondrial genomics and the new insect order Mantophasmatodea. , 2006, Molecular phylogenetics and evolution.

[53]  Nick Patterson,et al.  Combinatorics and next-generation sequencing , 2009, Nature Biotechnology.

[54]  A. Hassanin Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. , 2006, Molecular Phylogenetics and Evolution.

[55]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[56]  S. Seo,et al.  Complete mitochondrial genome sequence of the yellow-spotted long-horned beetle Psacothea hilaris (Coleoptera: Cerambycidae) and phylogenetic analysis among coleopteran insects , 2009, Molecules and cells.

[57]  Robin B Gasser,et al.  Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda) , 2008, BMC Genomics.

[58]  T. Mockler,et al.  Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology , 2008, Nucleic acids research.

[59]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[60]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..