Multilevel strategies for parametric shape optimization in aerodynamics

The essential numerical features of multilevel strategies developed for parametric shape optimization are reviewed. These methods employ nested parameterization supports of either shape, or shape deformation, and the classical process of degree elevation resulting in exact geometrical data transfer from coarse to fine representations. The algorithms mimick classical multigrid strategies and are found very effective in terms of convergence acceleration. In particular, for a drag reduction problem involving a three-dimensional Eulerian transonic flow simulated by an unstructured-grid finite-volume method, the complete algorithm is found to be noticeably superior to the natural algorithm simply based on progressive degree elevation.

[1]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[2]  R. Duvigneau Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization , 2005 .

[3]  Jacques Periaux,et al.  Optimum Aerodynamic Design & Parallel Navier-Stokes Computations ECARP — European Computational Aerodynamics Research Project , 1998 .

[4]  Jean-Antoine Désidéri,et al.  Nested and self-adaptive Bézier parameterizations for shape optimization , 2007, J. Comput. Phys..

[5]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[6]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[7]  Lorenz T. Biegler Optimal design and control , 1997 .

[8]  Jeffrey Borggaard,et al.  Optimal design and control : proceedings of the Workshop on Optimal Design and Control, Blacksburg, Virginia, April 8-9, 1994 , 1995 .

[9]  J. H Heinbockel Numerical Methods for Scientific Computing , 2004 .

[10]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[11]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[12]  Mourad Sefrioui,et al.  A Hierarchical Genetic Algorithm Using Multiple Models for Optimization , 2000, PPSN.

[13]  Antony Jameson,et al.  Optimum aerodynamic design using the Navier-Stokes equations , 1997 .

[14]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[15]  Jean-Antoine Désidéri,et al.  MULTILEVEL SHAPE PARAMETERIZATION FOR AERODYNAMIC OPTIMIZATION - APPLICATION TO DRAG AND NOISE REDUCTION OF TRANSONIC/SUPERSONIC BUSINESS JET , 2004 .

[16]  Stephen G. Nash,et al.  Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..

[17]  R. Lewis,et al.  A MULTIGRID APPROACH TO THE OPTIMIZATION OF SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS , 2000 .

[18]  Mourad Sefrioui,et al.  Algorithmes evolutionnaires pour le calcul scientifique : application a l'electromagnetisme et a la mecanique des fluides numeriques , 1998 .

[19]  W. K. Anderson,et al.  First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization , 2000 .

[20]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .

[21]  Jamshid A. Samareh,et al.  MULTIDISCIPLINARY AERODYNAMIC-STRUCTURAL SHAPE OPTIMIZATION USING DEFORMATION (MASSOUD) , 2000 .