A non‐local continuum damage approach to model dynamic crack branching

Dynamic crack branching instabilities in a brittle material are studied numerically by using a non-local damage model. PMMA is taken as our model brittle material. The simulated crack patterns, crack velocities and dissipated energies, compare favorably to experimental data gathered from the literature, as long as the critical strain for damage initiation as well as the parameters for a rate-dependent damage law are carefully selected. Nonetheless, the transition from a straight crack propagation to the emergence of crack branches is very sensitive to the damage initiation threshold. The transition regime is thus a particularly interesting challenge for numerical approaches. We advocate using the present numerical study as a benchmark to test the robustness of alternative non-local numerical approaches.

[1]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[2]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[3]  Jean-François Molinari,et al.  A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials , 2005 .

[4]  M. Jirásek Mathematical analysis of strain localization , 2007 .

[5]  J. Fineberg,et al.  Microbranching instability and the dynamic fracture of brittle materials. , 1996, Physical review. B, Condensed matter.

[6]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[7]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching , 1984 .

[8]  Milan Jirásek,et al.  Nonlocal damage mechanics , 2007, Encyclopedia of Continuum Mechanics.

[9]  Christian Miehe,et al.  A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns , 2013 .

[10]  Magdalena Ortiz,et al.  An eigenerosion approach to brittle fracture , 2012 .

[11]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[12]  Ted Belytschko,et al.  Wave propagation in a strain-softening bar: Exact solution , 1985 .

[13]  Wam Marcel Brekelmans,et al.  Comparison of nonlocal approaches in continuum damage mechanics , 1995 .

[14]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[15]  Z. Bažant Mechanics of Distributed Cracking , 1986 .

[16]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[17]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[18]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[19]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[20]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[21]  Milan Jirásek,et al.  Size effect on fracture energy induced by non‐locality , 2004 .

[22]  Milan Jirásek,et al.  Comparison of integral-type nonlocal plasticity models for strain-softening materials , 2003 .

[23]  Pierre Ladevèze,et al.  A damage computational method for composite structures , 1992 .

[24]  Gross,et al.  Energy dissipation in dynamic fracture. , 1996, Physical review letters.

[25]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[26]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[27]  O. Allix,et al.  Delayed-Damage Modelling for Fracture Prediction of Laminated Composites under Dynamic Loading , 1997 .

[28]  T. Belytschko,et al.  A Précis of Developments in Computational Methods for Transient Analysis , 1983 .

[29]  J. Molinari,et al.  Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading , 2011 .

[30]  Zdenek P. Bazant,et al.  Instability, Ductility, and Size Effect in Strain-Softening Concrete , 1978 .

[31]  F. Dufour,et al.  Stress-based nonlocal damage model , 2011 .

[32]  M. B. Nooru-Mohamed Mixed-mode fracture of concrete : An experimental approach , 1992 .

[33]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[34]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .