A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions

We study positive solutions to the two-point boundary value problem: $$\begin{aligned} \begin{matrix} -u''=\lambda h(t) f(u)~;~(0,1) \\ u(0)=0\\ u'(1)+c(u(1))u(1)=0,\end{matrix} \end{aligned}$$ where $$\lambda >0$$ is a parameter, $$h \in C^1((0,1],(0,\infty ))$$ is a decreasing function, $$f \in C^1((0,\infty ),\mathbb {R}) $$ is an increasing concave function such that $$\lim \limits _{s \rightarrow \infty }f(s)=\infty $$ , $$\lim \limits _{s \rightarrow \infty }\frac{f(s)}{s}=0$$ , $$\lim \limits _{s \rightarrow 0^+}f(s)=-\infty $$ (infinite semipositone) and $$c \in C([0,\infty ),(0,\infty ))$$ is an increasing function. For classes of such h and f, we establish the uniqueness of positive solutions for $$\lambda \gg 1$$ .

[1]  E. N. Dancer On the Number of Positive Solutions of Weakly Non‐Linear Elliptic Equations when a Parameter is Large , 1986 .

[2]  Zongming Guo,et al.  Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  R. Shivaji,et al.  Uniqueness of positive radial solutions for a class of infinite semipositone 𝑝-Laplacian problems in a ball , 2020 .

[4]  Eun Kyoung Lee,et al.  Positive radial solutions to classes of singular problems on the exterior domain of a ball , 2016 .

[5]  P. Lions On the Existence of Positive Solutions of Semilinear Elliptic Equations , 1982 .

[6]  A. Castro,et al.  Uniqueness of Nonnegative Solutions for Semipositone Problems on Exterior Domains , 2012 .

[7]  Eun Kyoung Lee,et al.  Positive solutions for infinite semipositone problems on exterior domains , 2011, Differential and Integral Equations.

[8]  P. Drábek,et al.  Existence and uniqueness of positive solutions for some quasilinear elliptic problems , 2001 .

[9]  D. D. Hai,et al.  Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball , 2019, Journal of Differential Equations.

[10]  R. Shivaji,et al.  Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains , 2019, Journal of Mathematical Analysis and Applications.

[11]  Zongming Guo On the number of positive solutions for quasilinear elliptic eigenvalue problems , 1996 .

[12]  A. Castro,et al.  Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity , 1995 .

[13]  P. Simon,et al.  Multiplicity for semilinear elliptic equations involving singular nonlinearity , 2006 .

[14]  E. N. Dancer,et al.  Uniqueness and Nonexistence of Positive Solutions to Semipositone Problems , 2006 .

[15]  L. Caffarelli,et al.  Inequalities for second-order elliptic equations with applications to unbounded domains I , 1996 .

[16]  Michael G. Crandall,et al.  On a dirichlet problem with a singular nonlinearity , 1977 .

[17]  M. Ramaswamy,et al.  Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball , 2015 .

[18]  M. M. Coclite,et al.  On a singular nonlinear dirichlet problem , 1989 .

[19]  D. Hai On a class of singular p-Laplacian boundary value problems , 2011 .

[20]  J. Díaz,et al.  Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires , 1987 .