Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients

Until now, no third gradient theory has been proposed to describe the homogenized energy associated with a microscopic structure. In this paper, we prove that this is possible using pantographic-type structures. Their deformation energies involve combinations of nodal displacements having the form of second-order or third-order finite differences. We establish the Γ-convergence of these energies to second and third gradient functionals. Some mechanical examples are provided so as to illustrate the special features of these homogenized models.

[1]  Ahmed K. Noor,et al.  Analysis of beam-like lattice trusses , 1979 .

[2]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[3]  J. E. Dunn,et al.  On the thermomechanics of interstitial working , 1985 .

[4]  T. Lewiński,et al.  Plates, Laminates and Shells: Asymptotic Analysis and Homogenization , 2000 .

[5]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[6]  J. M. Viaño,et al.  Mathematical modelling of rods , 1996 .

[7]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[8]  R. Batra Thermodynamics of non-simple elastic materials , 1976 .

[9]  A Galerkin approximation for linear elastic shallow shells , 1992 .

[10]  M. Gurtin Thermodynamics and the possibility of spatial interaction in elastic materials , 1965 .

[11]  Andrea Braides,et al.  Limits of Discrete Systems with Long-Range Interactions , 2003 .

[12]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[13]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[14]  G. Maugin,et al.  The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .

[15]  Homogenization models for two-dimensional grid structures , 1995 .

[16]  R. Toupin Elastic materials with couple-stresses , 1962 .

[17]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[18]  Romesh C. Batra,et al.  An adaptive mesh refinement technique for two-dimensional shear band problems , 1993 .

[19]  R. Batra,et al.  Adiabatic Shear Bands in Simple and Dipolar Plastic Materials , 1987 .

[20]  L. Modica,et al.  Partial Differential Equations and the Calculus of Variations , 1989 .

[21]  A. Cemal Eringen,et al.  A unified theory of thermomechanical materials , 1966 .

[22]  G. E. Exadaktylos,et al.  Gradient elasticity with surface energy: Mode-I crack problem , 1998 .

[23]  R. Batra,et al.  Instability analysis and shear band spacing in gradient-dependent thermoviscoplastic materials with finite speeds of thermal waves , 2001 .

[24]  R. Batra,et al.  Dynamic shear band development in dipolar thermoviscoplastic materials , 1994, Computational Mechanics.

[25]  Nicola Luigi Rizzi,et al.  Continuum modelling of a beam-like latticed truss: Identification of the constitutive functions for the contact and inertial actions , 1990 .

[26]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .