A New Approach to Transform a Constrained Geometric Object

This chapter presents a geometric declarative model where objects and constraints are represented by a set of vectors in order to establish the specifications and to solve 2D and 3D problems. In this declarative model, vectors are not defined by their usual Cartesian coordinates but by their respective scalar products. Then a metric tensor characterizes the geometric object. To solve the problem, a new method based on the point displacement gives the final object satisfying all the specifications asked by the designer.

[1]  David Hestenes New Foundations for Classical Mechanics , 1986 .

[2]  Christoph M. Hoffmann,et al.  Finding Solvable Subsets of Constraint Graphs , 1997, CP.

[3]  David Lesage,et al.  Un modèle dynamique de spécifications d'ingénierie basé sur une approche de géométrie variationnelle , 2002 .

[4]  Sebti Foufou,et al.  Using Cayley-Menger determinants for geometric constraint solving , 2004, SM '04.

[5]  Philippe Serré Cohérence de la spécification d'un objet de l'espace euclidien à n dimensions , 2000 .

[6]  David Hestenes,et al.  A universal model for conformal geometries of Euclidean, spherical and double-hyperbolic spaces , 2001 .

[7]  Alain Riviere,et al.  Cotation tridimensionnelle des systémes mécaniques : théorie & pratique , 1994 .

[8]  Hongbo Li Hyperbolic Conformal Geometry with Clifford Algebra , 2001 .

[9]  Alain Rivière La géometrie du groupe des déplacements appliquée à la modélisation du tolérancement , 1993 .

[10]  Sebti Foufou,et al.  Geometric constraint solving: The witness configuration method , 2006, Comput. Aided Des..

[11]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[12]  Timothy F. Havel,et al.  Geometric Algebra in Quantum Information Processing , 2001 .

[13]  Christoph M. Hoffmann,et al.  Geometric constraint solver , 1995, Comput. Aided Des..

[14]  János Pach,et al.  Common Tangents to Four Unit Balls in R3 , 2001, Discret. Comput. Geom..

[15]  Dominique Michelucci,et al.  Solving geometric constraints by homotopy , 1995, IEEE Trans. Vis. Comput. Graph..

[16]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics , 1984 .

[17]  David Hestenes,et al.  Space-time algebra , 1966 .

[18]  C. Hoffmann,et al.  Symbolic and numerical techniques for constraint solving , 1998 .

[19]  J. C. Owen,et al.  Algebraic solution for geometry from dimensional constraints , 1991, SMA '91.