Monads need not be endofunctors
暂无分享,去创建一个
Thorsten Altenkirch | Tarmo Uustalu | James Chapman | Thorsten Altenkirch | James Chapman | Tarmo Uustalu
[1] John Hughes,et al. Generalising monads to arrows , 2000, Sci. Comput. Program..
[2] Mauro Javier Jaskelioff. Lifting of operations in modular monadic semantics , 2009 .
[3] Thorsten Altenkirch,et al. Structuring quantum effects: superoperators as arrows , 2006, Math. Struct. Comput. Sci..
[4] Richard Blute,et al. Categories for computation in context and unified logic , 1997 .
[5] Peter Selinger,et al. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.
[6] Peter Morris,et al. Indexed Containers , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.
[7] Robert D. Tennent,et al. Semantics of programming languages , 1991, Prentice Hall International Series in Computer Science.
[8] Ulf Norell. Dependently typed programming in Agda , 2009, TLDI '09.
[9] S. Lack,et al. The Catalan simplicial set , 2013, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] Kornel Szlachanyi,et al. Skew-monoidal categories and bialgebroids , 2012, 1201.4981.
[11] Tarmo Uustalu. Coherence for Skew-Monoidal Categories , 2014, MSFP.
[12] Dan Piponi,et al. Commutative monads, diagrams and knots , 2009, ICFP.
[13] Conor McBride,et al. Applicative programming with effects , 2008, J. Funct. Program..
[14] Edmund Robinson,et al. Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.
[15] Gordon D. Plotkin,et al. Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[16] Tarmo Uustalu,et al. Comonadic Notions of Computation , 2008, CMCS.
[17] Alan Mycroft,et al. Categorical Programming for Data Types with Restricted Parametricity , 2012 .
[18] Thorsten Altenkirch,et al. The Quantum IO Monad , 2006 .
[19] Kazuyuki Asada,et al. Arrows are strong monads , 2010, MSFP '10.
[20] Thorsten Altenkirch,et al. Containers: Constructing strictly positive types , 2005, Theor. Comput. Sci..
[21] Clemens Berger,et al. Monads with arities and their associated theories , 2011, 1101.3064.
[22] M. Bauer,et al. Triangulations , 1996, Discret. Math..
[23] Thorsten Altenkirch,et al. Monads Need Not Be Endofunctors , 2010, FoSSaCS.
[24] Charles Grellois,et al. Algebraic theories, monads, and arities , 2011, ArXiv.
[25] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[26] Marcelo P. Fiore,et al. Semantic analysis of normalisation by evaluation for typed lambda calculus , 2002, PPDP '02.
[27] Bart Jacobs,et al. Under Consideration for Publication in J. Functional Programming Categorical Semantics for Arrows , 2022 .
[28] Stephen Lack,et al. Skew monoidales, skew warpings and quantum categories , 2012, 1205.0074.
[29] Stephen Lack,et al. Triangulations, orientals, and skew monoidal categories☆ , 2014 .
[30] J. Roger Hindley,et al. Introduction to Combinators and Lambda-Calculus , 1986 .
[31] M. Laplaza,et al. Coherence for associativity not an isomorphism , 1972 .
[32] Benedikt Ahrens. Initiality for Typed Syntax and Semantics , 2012, WoLLIC.
[33] Thorsten Altenkirch,et al. Monadic Presentations of Lambda Terms Using Generalized Inductive Types , 1999, CSL.
[34] J. Michael Spivey. Algebras for combinatorial search , 2009, J. Funct. Program..
[35] Benedikt Ahrens. Modules over relative monads for syntax and semantics , 2016, Math. Struct. Comput. Sci..
[36] Murdoch James Gabbay,et al. Denotation of contextual modal type theory (CMTT): Syntax and meta-programming , 2013, J. Appl. Log..
[37] Chris Heunen,et al. Arrows, like Monads, are Monoids , 2006, MFPS.