Metal/covalent organic frameworks for aqueous rechargeable zinc-ion batteries

[1]  Fujun Li,et al.  Atomic Ruthenium-Riveted Metal-Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium-Oxygen Batteries. , 2022, Journal of the American Chemical Society.

[2]  Longtao Ma,et al.  Aqueous rechargeable zinc air batteries operated at −110°C , 2022, Chem.

[3]  Ziqi Wang,et al.  In Situ Growth of a Metal–Organic Framework-Based Solid Electrolyte Interphase for Highly Reversible Zn Anodes , 2022, ACS Energy Letters.

[4]  Zhaodong Huang,et al.  Polymeric Single‐Ion Conductors with Enhanced Side‐Chain Motion for High‐Performance Solid Zinc‐Ion Batteries , 2022, Advanced materials.

[5]  E. Wang,et al.  Anion-functionalized Interfacial Layer for Stable Zn Metal Anodes , 2022, Nano Energy.

[6]  L. Archer,et al.  Toward practical aqueous zinc-ion batteries for electrochemical energy storage , 2022, Joule.

[7]  Hongmei Cao,et al.  Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries , 2022, Science China Chemistry.

[8]  Yifei Wang,et al.  Reversibility of a High-Voltage, Cl–-Regulated, Aqueous Mg Metal Battery Enabled by a Water-in-Salt Electrolyte , 2022, ACS Energy Letters.

[9]  M. Fichtner,et al.  Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature , 2022, Nature Communications.

[10]  Yuwei Zhao,et al.  Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries , 2022, Nature Communications.

[11]  Zhaodong Huang,et al.  Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries , 2022, Chem.

[12]  Yu Cao,et al.  Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction , 2022, Advanced Energy Materials.

[13]  Lai‐Hon Chung,et al.  Highly Crystalline Flower-Like Covalent-Organic Frameworks Enable Highly Stable Zinc Metal Anodes , 2022, ACS Applied Energy Materials.

[14]  Dan Zhao,et al.  Covalent Organic Framework Film Protected Zinc Anode for Highly Stable Rechargeable Aqueous Zinc-Ion Batteries , 2022, Energy Storage Materials.

[15]  Jiang Zhou,et al.  Design Strategies for High-Energy-Density Aqueous Zinc Batteries. , 2022, Angewandte Chemie.

[16]  Yunhua Xu,et al.  A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries , 2022, Proceedings of the National Academy of Sciences.

[17]  Zhaodong Huang,et al.  Recent advances and future perspectives for aqueous zinc-ion capacitors , 2021, Materials Futures.

[18]  Guohao He,et al.  Amphiphilic Carborane-Based Covalent Organic Frameworks as Efficient Polysulfide Nano-Trappers for Lithium-Sulfur Batteries. , 2021, ACS applied materials & interfaces.

[19]  Bingbing Tian,et al.  Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation , 2021, Science China Chemistry.

[20]  C. Zhi,et al.  Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries , 2021, Matter.

[21]  Yuliang Cao,et al.  Emerging Intercalation Cathode Materials for Multivalent Metal‐Ion Batteries: Status and Challenges , 2021, Small Structures.

[22]  V. Kale,et al.  Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc‐Ion Batteries , 2021, Advanced materials.

[23]  Weihua Chen,et al.  Metal/ covalent‐organic frameworks for electrochemical energy storage applications , 2021, EcoMat.

[24]  Chaoqun Niu,et al.  High-Voltage Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solid-State Lithium Metal Batteries with Nickel-Rich Cathodes. , 2021, Angewandte Chemie.

[25]  B. Grzybowski,et al.  Self‐Assembling Films of Covalent Organic Frameworks Enable Long‐Term, Efficient Cycling of Zinc‐Ion Batteries , 2021, Advanced materials.

[26]  Huigang Zhang,et al.  Engineering Two-Dimensional Metal-Organic Framework on Molecular Basis for Fast Li+ Conduction. , 2021, Nano letters.

[27]  Weihua Chen,et al.  Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. , 2021, ACS nano.

[28]  Hongbing Lu,et al.  Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries , 2021, Nature Communications.

[29]  Xiaosi Zhou,et al.  Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries , 2021, Science China Chemistry.

[30]  C. Zhi,et al.  Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure , 2021, Nature Communications.

[31]  Ming Liu,et al.  Metal/Covalent‐Organic Framework Based Cathodes for Metal‐Ion Batteries , 2021, Advanced Energy Materials.

[32]  Duo Chen,et al.  Recent advances in energy storage mechanism of aqueous zinc-ion batteries , 2021, Journal of Energy Chemistry.

[33]  F. Pan,et al.  Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes , 2021, Nano-micro letters.

[34]  Xi-hong Lu,et al.  A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. , 2020, Journal of the American Chemical Society.

[35]  C. Li,et al.  Pristine MOF and COF materials for advanced batteries , 2020 .

[36]  P. He,et al.  A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long‐Life Aqueous Zinc–Iodide Batteries , 2020, Advanced materials.

[37]  F. Kang,et al.  High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials , 2020, Nano-Micro Letters.

[38]  T. Deng,et al.  Hydrophobic organic electrolyte protected Zn anodes for aqueous Zn batteries. , 2020, Angewandte Chemie.

[39]  V. Kale,et al.  Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery , 2020, ACS Energy Letters.

[40]  Jingjuan Liu,et al.  2D Conductive Metal-Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. , 2020, Angewandte Chemie.

[41]  Dipan Kundu,et al.  Scientific Challenges for the Implementation of Zn-Ion Batteries , 2020 .

[42]  Xiaowei Mu,et al.  Constructing a supersaturated electrolyte front surface for stable rechargeable aqueous zinc batteries. , 2020, Angewandte Chemie.

[43]  Jiujun Zhang,et al.  Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges and Perspectives. , 2020, ChemSusChem.

[44]  Yong Lu,et al.  Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries , 2020, Nature Communications.

[45]  J. F. Stoddart,et al.  Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries , 2019, Nature Communications.

[46]  Zhenyu Zhou,et al.  Self-sacrificed synthesis of conductive vanadium-based Metal–Organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries , 2019, Nano Energy.

[47]  Zifeng Wang,et al.  Advanced rechargeable zinc-based batteries: Recent progress and future perspectives , 2019, Nano Energy.

[48]  Daliang Fang,et al.  Activating C‐Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid‐Ion Batteries with 10 000‐Cycle Lifespan and Superior Rate Capability , 2019, Advanced materials.

[49]  Sehee Lee,et al.  Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. , 2019, Journal of the American Chemical Society.

[50]  Jiajie Liu,et al.  A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries , 2019, Nano Energy.

[51]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[52]  Erjing Wang,et al.  Tailoring π-Conjugated Systems: From π-π Stacking to High-Rate-Performance Organic Cathodes , 2018, Chem.

[53]  J. Caro,et al.  Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation , 2018, Science Advances.

[54]  Yantao Zhang,et al.  Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes , 2018, Joule.

[55]  H. Fan,et al.  Recent Advances in Zn‐Ion Batteries , 2018, Advanced Functional Materials.

[56]  Yong Lu,et al.  A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. , 2018, Angewandte Chemie.

[57]  D. Jiang,et al.  Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. , 2018, Journal of the American Chemical Society.

[58]  Yongchang Liu,et al.  Rechargeable Aqueous Zn–V2O5 Battery with High Energy Density and Long Cycle Life , 2018 .

[59]  J. R. Schmidt,et al.  In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. , 2018, Chemical reviews.

[60]  Yong Lu,et al.  High-capacity aqueous zinc batteries using sustainable quinone electrodes , 2018, Science Advances.

[61]  Yi Cui,et al.  Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance , 2018 .

[62]  Tao Gao,et al.  Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. , 2017, Journal of the American Chemical Society.

[63]  Yuguang Ma,et al.  CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. , 2017, Chemical reviews.

[64]  J. Hupp,et al.  Melt-Quenched Glasses of Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[65]  J. Long,et al.  A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[66]  Kunio Awaga,et al.  Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. , 2014, Journal of the American Chemical Society.