QuantImPy: Minkowski functionals and functions with Python

Abstract The Minkowski functionals and functions are a family of morphological measures and can be used to describe both the morphology (shape) and topology (connectedness) of a system. This paper presents the QuantImPy Python package which can compute both the Minkowski functionals and functions. In addition, this package can efficiently perform basic morphological operations and compute their distance maps. QuantImPy is easy to install, well-documented, integrated with existing Python packages, and open source.

[1]  Hans-Jörg Vogel,et al.  Quantification of soil structure based on Minkowski functions , 2010, Comput. Geosci..

[2]  J. Serra Introduction to mathematical morphology , 1986 .

[3]  Marco Pinna,et al.  Cubic phases of block copolymers under shear and electric fields by cell dynamics simulation. I. Spherical phase. , 2006, The Journal of chemical physics.

[4]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[5]  Frank Mücklich,et al.  Statistical Analysis of Microstructures in Materials Science , 2000 .

[6]  James E. McGrath,et al.  Block Copolymers: Overview and Critical Survey , 1977 .

[7]  Klaus Mecke,et al.  Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics , 2000 .

[8]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[9]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[10]  Krzysztof M. Gorski,et al.  Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1998 .

[11]  H. Tchelepi,et al.  Minkowski functionals for phase behavior under confinement , 2020, 2004.01344.

[12]  Klaus Mecke,et al.  Utilizing Minkowski functionals for image analysis: a marching square algorithm , 2008 .

[13]  Ingemar Ragnemalm,et al.  Fast erosion and dilation by contour processing and thresholding of distance maps , 1992, Pattern Recognit. Lett..

[14]  Wim H. Hesselink,et al.  A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.

[15]  M.Kerscher,et al.  Minkowski Functionals of Abell/ACO Clusters , 1996, astro-ph/9606133.

[16]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[17]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[18]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[19]  A. Arman,et al.  Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films , 2019, Materials Research Express.

[20]  H. Tchelepi,et al.  The Effect of Topology on Phase Behavior under Confinement , 2021, Processes.

[21]  Christoph H. Arns,et al.  Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions , 2018, Transport in Porous Media.

[22]  K. Mecke,et al.  Morphological characterization of spinodal decomposition kinetics , 1999 .

[23]  Daniel P. Huttenlocher,et al.  Distance Transforms of Sampled Functions , 2012, Theory Comput..

[24]  Norihito Naruto,et al.  Histological classification of non-small cell lung cancer using Gabor filtering Minkowski functionals and Neighborhood Component Analysis on CT images. , 2021 .

[25]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..