Temperature dependence of avalanche breakdown for epitaxial diodes in 4H silicon carbide

The temperature dependence of avalanche breakdown is investigated for uniform and microplasma-related breakdown in epitaxial 4H SiC p-n junctions. P-n mesa diodes fabricated with positive angle beveling and oxide passivation can withstand temperatures of up to 300–400 °C in the breakdown regime. Uniform avalanche breakdown in 4H silicon carbide appears to have a positive temperature coefficient, in contrast to the 6H polytype, where the temperature coefficient is negative. The influence of deep levels on avalanche breakdown in epitaxial diodes is of minor importance for uniform breakdown, but appears to be significant for breakdown through microplasmas. A negative temperature coefficient for the avalanche breakdown voltage can be observed even for 4H SiC if the breakdown is dominated by microplasmas.