Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories

Chimera enables multi-target optimization for experimentation or expensive computations, where evaluations are the limiting factor.

[1]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[2]  Carlos A. Coello Coello,et al.  An Overview of Weighted and Unconstrained Scalarizing Functions , 2017, EMO.

[3]  W. Stadler Multicriteria Optimization in Engineering and in the Sciences , 1988 .

[4]  Jason E. Hein,et al.  Real-time HPLC-MS reaction progress monitoring using an automated analytical platform , 2017 .

[5]  J. I The Design of Experiments , 1936, Nature.

[6]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[7]  Christos N. Markides,et al.  Analysis and optimisation of packed-bed thermal reservoirs for electricity storage applications , 2016 .

[8]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[9]  Alán Aspuru-Guzik,et al.  Phoenics: A Bayesian Optimizer for Chemistry , 2018, ACS central science.

[10]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[11]  Klavs F. Jensen,et al.  Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis , 2012 .

[12]  B. Matthews,et al.  Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola , 1975, Nature.

[13]  Tobias Kramer,et al.  Exciton Dynamics Lab for Light-Harvesting Complexes (GPU-HEOM) , 2012 .

[14]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[15]  Ulf Schlichtmann,et al.  A Successive Approach to Compute the Bounded Pareto Front of Practical Multiobjective Optimization Problems , 2009, SIAM J. Optim..

[16]  V. May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: MAY:CHARGE TRANSFER 3ED O-BK , 2011 .

[17]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[18]  Bijay Ketan Panigrahi,et al.  Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index , 2016 .

[19]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[20]  J. Leegwater,et al.  Coherent Versus Incoherent Energy Transfer and Trapping in Photosynthetic Antenna Complexes , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[21]  Alán Aspuru-Guzik,et al.  ChemOS: An orchestration software to democratize autonomous discovery , 2020, PloS one.

[22]  Klavs F Jensen,et al.  An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. , 2010, Angewandte Chemie.

[23]  B. J. McCoy,et al.  Optimization of thermal energy storage in packed columns , 1985 .

[24]  Jasper Snoek,et al.  Input Warping for Bayesian Optimization of Non-Stationary Functions , 2014, ICML.

[25]  Thomas Renger,et al.  Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? , 2008, Journal of the American Chemical Society.

[26]  Junichi Murata,et al.  General Subpopulation Framework and Taming the Conflict Inside Populations , 2015, Evolutionary Computation.

[27]  Peter R Wiecha,et al.  Evolutionary Multi-Objective Optimisation of Colour Pixels based on Dielectric Nano-Antennas , 2016, 1609.06709.

[28]  Ching-Lai Hwang,et al.  Multiple Objective Decision Making , 1994 .

[29]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[30]  Rahul Rao,et al.  Autonomy in materials research: a case study in carbon nanotube growth , 2016 .

[31]  Alán Aspuru-Guzik,et al.  PHOENICS: A universal deep Bayesian optimizer , 2018, 1801.01469.

[32]  Michel Feidt,et al.  Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm , 2015 .

[33]  G. Fleming,et al.  On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. , 2009, The Journal of chemical physics.

[34]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[35]  Victor Picheny,et al.  Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction , 2013, Statistics and Computing.

[36]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[37]  Leroy Cronin,et al.  Networking Chemical Robots Using Twitter for #RealTimeChem , 2018 .

[38]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[39]  Y. Tanimura Reduced hierarchy equations of motion approach with Drude plus brownian spectral distribution: probing electron transfer processes by means of two-dimensional correlation spectroscopy. , 2012, The Journal of chemical physics.

[40]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[41]  Daniel Hern'andez-Lobato,et al.  Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints , 2016, Neurocomputing.

[42]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[43]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[44]  Martin D. Burke,et al.  Synthesis of many different types of organic small molecules using one automated process , 2015, Science.

[45]  A. Haselbacher,et al.  Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage , 2018 .

[46]  Mark J. Anderson,et al.  DOE Simplified: Practical Tools for Effective Experimentation , 2000 .

[47]  Jared L. Cohon,et al.  Multiobjective programming and planning , 2004 .

[48]  Thomas Renger,et al.  Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. , 2008, Biophysical journal.

[49]  Geoffrey R Akien,et al.  Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors , 2016 .

[50]  Martyn Poliakoff,et al.  Adaptive Process Optimization for Continuous Methylation of Alcohols in Supercritical Carbon Dioxide , 2011 .

[51]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[52]  R. Kubo,et al.  Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath , 1989 .

[53]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[54]  Martyn Poliakoff,et al.  The Effect of Self-Optimisation Targets on the Methylation of Alcohols Using Dimethyl Carbonate in Supercritical CO2 , 2012, Journal of Flow Chemistry.

[55]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[56]  Silvana M. B. Afonso,et al.  A modified NBI and NC method for the solution of N-multiobjective optimization problems , 2012 .

[57]  Martin D Burke,et al.  The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. , 2018, Angewandte Chemie.

[58]  K. B. Whaley,et al.  Using coherence to enhance function in chemical and biophysical systems , 2017, Nature.

[59]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[60]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[61]  Kwei-Jay Lin,et al.  A theory of lexicographic multi-criteria optimization , 1996, Proceedings of ICECCS '96: 2nd IEEE International Conference on Engineering of Complex Computer Systems (held jointly with 6th CSESAW and 4th IEEE RTAW).

[62]  Tobias Kramer,et al.  Disentangling electronic and vibronic coherences in two-dimensional echo spectra. , 2013, The journal of physical chemistry. B.

[63]  Adam P. Willard,et al.  Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. , 2013, Nature materials.

[64]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[65]  P. E. Keivanidis,et al.  Visualizing charge separation in bulk heterojunction organic solar cells , 2013, Nature Communications.

[66]  Yacov Y. Haimes,et al.  Integrated System Identification and Optimization , 1973 .

[67]  John C. deMello,et al.  Tuning reaction products by constrained optimisation , 2017 .

[68]  Thomas Renger,et al.  Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II , 2011, Photosynthesis Research.

[69]  M. Emmerich,et al.  The computation of the expected improvement in dominated hypervolume of Pareto front approximations , 2008 .

[70]  F. Waltz An engineering approach: Hierarchical optimization criteria , 1967, IEEE Transactions on Automatic Control.

[71]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[72]  C. Kreisbeck,et al.  Modelling of oscillations in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex , 2011, 1110.1511.

[73]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[74]  Claudio Battilocchio,et al.  A Novel Internet-Based Reaction Monitoring, Control and Autonomous Self-Optimization Platform for Chemical Synthesis , 2015 .

[75]  Wolfram Stadler,et al.  Fundamentals of Multicriteria Optimization , 1988 .

[76]  Alán Aspuru-Guzik,et al.  ChemOS: Orchestrating autonomous experimentation , 2018, Science Robotics.

[77]  Oleksandr Romanko,et al.  Normalization and Other Topics in Multi­Objective Optimization , 2006 .

[78]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[79]  Christoph Kreisbeck,et al.  Machine learning for quantum dynamics: deep learning of excitation energy transfer properties† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03542j , 2017, Chemical science.

[80]  A. deMello,et al.  Intelligent routes to the controlled synthesis of nanoparticles. , 2007, Lab on a chip.

[81]  Leroy Cronin,et al.  Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals , 2018, Science.

[82]  Klavs F. Jensen,et al.  Simultaneous solvent screening and reaction optimization in microliter slugs. , 2015, Chemical communications.

[83]  Alán Aspuru-Guzik,et al.  Scalable High-Performance Algorithm for the Simulation of Exciton Dynamics. Application to the Light-Harvesting Complex II in the Presence of Resonant Vibrational Modes. , 2014, Journal of chemical theory and computation.

[84]  Jaehoon Jung Robust Design of Plasmonic Waveguide Using Gradient Index and Multiobjective Optimization , 2016, IEEE Photonics Technology Letters.

[85]  Richard N. Zare,et al.  Optimizing Chemical Reactions with Deep Reinforcement Learning , 2017, ACS central science.