Spatial coherence in complex photonic and plasmonic systems.

The concept of cross density of states characterizes the intrinsic spatial coherence of complex photonic or plasmonic systems, independently of the illumination conditions. Using this tool and the associated intrinsic coherence length, we demonstrate unambiguously the spatial squeezing of eigenmodes on disordered fractal metallic films, thus clarifying a basic issue in plasmonics.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Li,et al.  Quantum percolation in three-dimensional systems. , 1992, Physical review. B, Condensed matter.

[3]  Localization length exponent in quantum percolation. , 1995, Physical review letters.

[4]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[5]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[6]  Vladimir M. Shalaev,et al.  Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites , 1999 .

[7]  V. Shalaev Nonlinear optics of random media , 1999 .

[8]  Vladimir M. Shalaev,et al.  EXPERIMENTAL OBSERVATION OF LOCALIZED OPTICAL EXCITATIONS IN RANDOM METAL-DIELECTRIC FILMS , 1999 .

[9]  D. Bergman,et al.  Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? , 2001, Physical review letters.

[10]  R. Weaver,et al.  Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. , 2001, Physical review letters.

[11]  M Fink,et al.  Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. , 2002, Physical review letters.

[12]  A. Friberg,et al.  Universality of electromagnetic-field correlations within homogeneous and isotropic sources. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. Genov,et al.  Plasmon localization and local field distribution in metal-dielectric films. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  K. Joulain,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[15]  R. Carminati,et al.  Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field , 2005, physics/0504068.

[16]  P. Schattschneider,et al.  Plasmon holographic experiments: theoretical framework. , 2005, Ultramicroscopy.

[17]  D. Genov,et al.  Coexistence of localized and delocalized surface plasmon modes in percolating metal films. , 2006, Physical review letters.

[18]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[19]  Mickael Tanter,et al.  Correlation of random wavefields: An interdisciplinary review , 2006 .

[20]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[21]  Anderson localization of polar eigenmodes in random planar composites , 2006, physics/0602098.

[22]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[23]  G. Lerosey,et al.  Focusing Beyond the Diffraction Limit with Far-Field Time Reversal , 2007, Science.

[24]  M Fink,et al.  Theory of the time reversal cavity for electromagnetic fields. , 2007, Optics letters.

[25]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[26]  Maxim Durach,et al.  Toward full spatiotemporal control on the nanoscale. , 2007, Nano letters.

[27]  M. V. D. van de Corput,et al.  Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. , 2007, Nano letters.

[28]  Mark I. Stockman,et al.  Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal , 2008 .

[29]  Anne Sentenac,et al.  Subdiffraction light focusing on a grating substrate. , 2008, Physical review letters.

[30]  J. Laverdant,et al.  Polarization dependent near-field speckle of random gold films , 2008 .

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  A. Mosk,et al.  Exploiting disorder for perfect focusing , 2009, 0910.0873.

[33]  Pedro David Garcia,et al.  Cavity Quantum Electrodynamics with Anderson-Localized Modes , 2010, Science.

[34]  R. Carminati,et al.  Fluctuations of the local density of states probe localized surface plasmons on disordered metal films. , 2010, Physical review letters.

[35]  Ulrich Hohenester,et al.  Influence of surface roughness on the optical properties of plasmonic nanoparticles , 2011, 1209.5200.

[36]  R. Carminati,et al.  Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions. , 2011, Physical review letters.

[37]  R. Carminati,et al.  Magneto-optical control of Förster energy transfer , 2011 .

[38]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[39]  R. Carminati,et al.  Radiative and non-radiative local density of states on disordered plasmonic films , 2012, 1202.3360.

[40]  M. Kociak,et al.  Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes , 2012 .

[41]  R. Carminati,et al.  Distance dependence of the local density of states in the near field of a disordered plasmonic film. , 2011, Optics letters.

[42]  Fabrice Charra,et al.  Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy , 2012 .

[43]  P. Van Dorpe,et al.  Ultralocal modification of surface plasmons properties in silver nanocubes. , 2012, Nano letters.

[44]  P. Huidobro,et al.  Superradiance mediated by graphene surface plasmons , 2012, 1201.6492.

[45]  Y. Gartstein,et al.  Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. , 2011, Physical review letters.