Anti-perovskite nitrides and oxides: Properties and preparation

[1]  Xueting Feng,et al.  Negative thermal expansion behaviour of graphdiyne , 2023, Nano Today.

[2]  Judith Schuett,et al.  The origin of high Na+ ion conductivity in Na1+xZr2SixP3-xO12 NASICON materials. , 2022, Physical chemistry chemical physics : PCCP.

[3]  Nouf H. Alotaibi,et al.  Frist principle study of double perovskites Cs2AgSbX6 (X = Cl, Br, I) for solar cell and renewable energy applications , 2022, Journal of Physics and Chemistry of Solids.

[4]  O. Guillon,et al.  Author Correction: Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes , 2022, Nature Communications.

[5]  R. Guo,et al.  The Effects of Organic Cation Rotation on Hybrid Organic-Inorganic Perovskites: A Critical Review , 2022, Materials & Design.

[6]  Jian-feng Li,et al.  Interfacial Electron Delocalization in Engineering Nanosized Anti-Perovskite Nitride for Efficient CO2 Electroreduction , 2022, Chemistry of Materials.

[7]  Xiang Chen,et al.  Review on the lithium transport mechanism in solid‐state battery materials , 2022, WIREs Computational Molecular Science.

[8]  F. Tsuji,et al.  Formation of Passivate Interphases by Na3BS3-Glass Solid Electrolytes in All-Solid-State Sodium-Metal Batteries. , 2022, ACS applied materials & interfaces.

[9]  Jianhua Lin,et al.  Synthesis, Structure and Superconducting Properties of Ba1-xLax/4K3x/4(Bi0.25Pb0.75)O3- Perovskites , 2022, Physica C: Superconductivity and its Applications.

[10]  Zhenhua Lin,et al.  Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells , 2022, Nano-Micro Letters.

[11]  V. Wang,et al.  Unraveling the Factors Affecting the Mechanical Properties of Halide Perovskites from First-Principles Calculations , 2022, The Journal of Physical Chemistry C.

[12]  Yang Zhao,et al.  Antiperovskite Electrolytes for Solid-State Batteries. , 2022, Chemical reviews.

[13]  M. Kovalenko,et al.  Perspective on design and technical challenges of Li-garnet solid-state batteries , 2021, Science and technology of advanced materials.

[14]  Jinlong Zhu,et al.  Optimized Interfaces in Anti-Perovskite Electrolyte-Based Solid-State Lithium Metal Batteries for Enhanced Performance , 2021, Frontiers in Chemistry.

[15]  S. Arya,et al.  Review of current progress in hole-transporting materials for perovskite solar cells , 2021, Journal of Energy Chemistry.

[16]  M. Kerouad,et al.  Magnetic energy product and magnetocaloric effect in Fe3AlN anti-perovskite nitride material , 2021 .

[17]  Yiying Wu,et al.  Antiperovskite Superionic Conductors: A Critical Review , 2021, ACS materials Au.

[18]  Z. Ali,et al.  Optoelectronic and thermoelectric properties of A3AsN (A = Mg, Ca, Sr and Ba) in cubic and orthorhombic phase , 2021, Journal of Materials Research and Technology.

[19]  Pei Wang,et al.  Novel Nitride Materials Synthesized at High Pressure , 2021, Crystals.

[20]  Donald J. Siegel,et al.  Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes , 2021 .

[21]  E. Toberer,et al.  Ternary Nitride Materials: Fundamentals and Emerging Device Applications , 2020, Annual Review of Materials Research.

[22]  Baoling Huang,et al.  Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries , 2021 .

[23]  A. Shluger,et al.  Inverse Perovskite Oxysilicides and Oxygermanides as Candidates for Nontoxic Infrared Semiconductor and Their Chemical Bonding Nature. , 2020, Inorganic chemistry.

[24]  Siyu Jin,et al.  Semiconductor-to-metal reconstructive phase transition and superconductivity of anti-perovskite Ca3PN under hydrostatic pressure , 2020 .

[25]  F. Oba,et al.  Theoretical exploration of mixed-anion antiperovskite semiconductors M3XN(M=Mg,Ca,Sr,Ba;X=P,As,Sb,Bi) , 2020 .

[26]  Yanchun Zhou,et al.  Anti-perovskite carbides and nitrides A3BX: A new family of damage tolerant ceramics , 2020 .

[27]  J. Hargreaves,et al.  Towards anti-perovskite nitrides as potential nitrogen storage materials for chemical looping ammonia production: Reduction of Co3ZnN, Ni3ZnN, Co3InN and Ni3InN under hydrogen , 2020 .

[28]  A. Benyoussef,et al.  Magnetic Properties of Mn3ZnN Anti-perovskite Nanoparticles: A Monte Carlo Simulations , 2020, Journal of Cluster Science.

[29]  A. Mar,et al.  Thermoelectric properties of inverse perovskites A3TtO (A = Mg, Ca; Tt = Si, Ge): Computational and experimental investigations , 2019, Journal of Applied Physics.

[30]  S. Lany,et al.  Thin Film Synthesis of Semiconductors in the Mg–Sb–N Materials System , 2019, Chemistry of Materials.

[31]  Donald J. Siegel,et al.  Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes , 2019, Journal of Materials Chemistry A.

[32]  K. Kuroki,et al.  Comparative First-Principles Study of Antiperovskite Oxides and Nitrides as Thermoelectric Material: Multiple Dirac Cones, Low-Dimensional Band Dispersion, and High Valley Degeneracy , 2019, Physical Review Applied.

[33]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[34]  Z. Hiroi,et al.  Synthesis of anti-perovskite-type carbides and nitrides from metal oxides and melamine , 2018, RSC advances.

[35]  A. Bouhemadou,et al.  Electronic, optical and thermoelectric investigations of Zintl phase AE3AlAs3 (AE = Sr, Ba): First-principles calculations , 2018, Chinese Journal of Physics.

[36]  Q. Mahmood,et al.  Investigations of optical and thermoelectric response of direct band gap Ca3XO (X = Si, Ge) anti-perovskites stabilized in cubic and orthorhombic phases , 2018 .

[37]  Q. Mahmood,et al.  Structural, electronic, optical and thermoelectric investigations of antiperovskites A 3 SnO (A = Ca, Sr, Ba) using density functional theory , 2018 .

[38]  Zhizhen Zhang,et al.  Na11Sn2PS12: a new solid state sodium superionic conductor , 2018 .

[39]  C. Ouyang,et al.  Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations , 2018 .

[40]  E. Haque,et al.  First-principles study of mechanical, thermodynamic, transport and superconducting properties of Sr3SnO , 2018 .

[41]  P. Albertus,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2017, Nature Energy.

[42]  Hui Wang,et al.  Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study. , 2016, Inorganic chemistry.

[43]  Y. Okamoto,et al.  Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO , 2016, 1604.06541.

[44]  Y. Maeno,et al.  Superconductivity in the antiperovskite Dirac-metal oxide Sr3−xSnO , 2016, Nature Communications.

[45]  Shyue Ping Ong,et al.  Design and synthesis of the superionic conductor Na10SnP2S12 , 2016, Nature Communications.

[46]  X. Lü,et al.  Antiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries , 2016, Advanced science.

[47]  G. Murtaza,et al.  Structural and Optoelectronic Properties of X3ZN (X = Ca, Sr, Ba; Z = As, Sb, Bi) Anti-Perovskite Compounds , 2016, Journal of Electronic Materials.

[48]  Erik A. Wu,et al.  Experimental and Computational Evaluation of a Sodium-Rich Anti-Perovskite for Solid State Electrolytes , 2016 .

[49]  Shuai Li,et al.  Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites , 2015 .

[50]  C. Mühle,et al.  Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb). , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[51]  Zhang Liqiang,et al.  Sn-Doped Mn3GaN Negative Thermal Expansion Material for Space Applications , 2014 .

[52]  I. Ahmad,et al.  Detailed DFT studies of the band profiles and optical properties of antiperovskites SbNCa3 and BiNCa3 , 2014 .

[53]  Anton Van der Ven,et al.  Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors , 2013 .

[54]  A. Belfedal,et al.  First-principles study of XNMg3 (X = P, As, Sb and Bi) antiperovskite compounds , 2013 .

[55]  Lihong Yang,et al.  CuNNi3: a new nitride superconductor with antiperovskite structure , 2013 .

[56]  Yi Zhang,et al.  Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites , 2013 .

[57]  Yuping Sun,et al.  Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3 , 2013 .

[58]  U. Hashim,et al.  Structural and optical investigations of cadmium sulfide nanostructures for optoelectronic applications , 2012 .

[59]  K. Takenaka,et al.  Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion , 2012 .

[60]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[61]  J. Hargreaves,et al.  The Reduction of Various Nitrides under Hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5 , 2012, Topics in Catalysis.

[62]  A. Zunger,et al.  Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS , 2012 .

[63]  M. Maamache,et al.  Influence of valence electron concentration on elastic, electronic and optical properties of the alkaline-earth tin oxides A3SnO (A=Ca, Sr and Ba): A comparative study with ASnO3 compounds , 2011 .

[64]  Zhengming Sun,et al.  Progress in research and development on MAX phases: a family of layered ternary compounds , 2011 .

[65]  Lihua Chu,et al.  Negative Thermal Expansion and Magnetic Transition in Anti‐Perovskite Structured Mn3Zn1−xSnxN Compounds , 2010 .

[66]  A. Bouhemadou,et al.  FP-APW+lo study of the elastic, electronic and optical properties for the cubic antiperovskite ANSr3 (A = As, Sb and Bi) under pressure effect , 2010 .

[67]  H. Morkoç,et al.  Oxides, Oxides, and More Oxides: High-κ Oxides, Ferroelectrics, Ferromagnetics, and Multiferroics , 2009 .

[68]  H. Takagi,et al.  Zero thermal expansion in a pure-form antiperovskite manganese nitride , 2009 .

[69]  M. Uehara,et al.  New Antiperovskite-Type Superconductor ZnNyNi3 , 2008, 0811.3483.

[70]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[71]  M. Chegaar,et al.  First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3 , 2007 .

[72]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[73]  T. Yamazaki,et al.  Superconducting Properties of CdCNi3 , 2007 .

[74]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[75]  C. Okoye First-principles optical calculations of AsNMg3 and SbNMg3 , 2006 .

[76]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[77]  A. Yoshiasa,et al.  Electrical Conductivities and Conduction Mechanisms of Perovskite‐type Na1‐xKxMgF3 (x = 0, 0.1, 1) and KZnF3 , 2005 .

[78]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[79]  Chonghe Li,et al.  Formability of ABO3 perovskites , 2004 .

[80]  M. Jansen,et al.  Zur Kenntnis der inversen Perowskite M3TO (M = Ca, Sr, Yb; T = Si, Ge, Sn, Pb) , 2004 .

[81]  A. L. Ivanovskii,et al.  Electronic band structure and chemical bonding in the new antiperovskites AsNMg3 and SbNMg3 , 2004 .

[82]  Tsutomu Minami,et al.  Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses , 2003 .

[83]  Y. Wang,et al.  Superconductivity in the non-oxide perovskite MgCNi3 , 2001, Nature.

[84]  John S. O. Evans,et al.  Negative Thermal Expansion Materials , 2004 .

[85]  Yusheng Zhao Crystal Chemistry and Phase Transitions of Perovskite inP–T–XSpace: Data for (KxNa1−x)MgF3Perovskites , 1998 .

[86]  J. Corbett,et al.  Orthorhombic Inverse Perovskitic Ba3TtO (Tt = Ge, Si) as Zintl Phases , 1998 .

[87]  H. Tributsch Solar Energy-Assisted Electrochemical Splitting of Water. Some Energetical, Kinetical and Catalytical Considerations Verified on MoS2 Layer Crystal Surfaces , 1977 .

[88]  D. Douglass,et al.  Theory for Superconductivity in d‐Band Metals , 1972 .

[89]  N. V. Smith,et al.  Photoelectron Energy Spectra and the Band Structures of the Noble Metals , 1971 .

[90]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .