A molecular phylogeny of thermophilic fungi.

Sequences from 86 fungal genomes and from the two outgroup genomes Arabidopsis thaliana and Drosophila melanogaster were analyzed to construct a robust molecular phylogeny of thermophilic fungi, which are potentially rich sources of industrial enzymes. To provide experimental reference points, growth characteristics of 22 reported thermophilic or thermotolerant fungi, together with eight mesophilic species, were examined at four temperatures: 22 °C, 34 °C, 45 °C, and 55 °C. Based on the relative growth performances, species with a faster growth rate at 45 °C than at 34 °C were classified as thermophilic, and species with better or equally good growth at 34 °C compared to 45 °C as thermotolerant. We examined the phylogenetic relationships of a diverse range of fungi, including thermophilic and thermotolerant species, using concatenated amino acid sequences of marker genes mcm7, rpb1, and rpb2 obtained from genome sequencing projects. To further elucidate the phylogenetic relationships in the thermophile-rich orders Sordariales and Eurotiales, we used nucleotide sequences from the nuclear ribosomal small subunit (SSU), the 5.8S gene with internal transcribed spacers 1 and 2 (ITS 1 and 2), and the ribosomal large subunit (LSU) to include additional species for analysis. These phylogenetic analyses clarified the position of several thermophilic taxa. Thus, Myriococcum thermophilum and Scytalidium thermophilum fall into the Sordariales as members of the Chaetomiaceae, Thermomyces lanuginosus belongs to the Eurotiales, Malbranchea cinnamomea is a member of the Onygenales, and Calcarisporiella thermophila is assigned to the basal fungi close to the Mucorales. The mesophilic alkalophile Acremonium alcalophilum clusters with Verticillium albo-atrum and Verticillium dahliae, placing them in the recently established order Glomerellales. Taken together, these data indicate that the known thermophilic fungi are limited to the Sordariales, Eurotiales, and Onygenales in the Ascomycota and the Mucorales with possibly an additional order harbouring C. thermophila in the basal fungi. No supporting evidence was found for thermophilic species belonging to the Basidiomycota.

[1]  C. Mora,et al.  How Many Species Are There on Earth and in the Ocean? , 2011, PLoS biology.

[2]  B. Hall,et al.  Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. M. Barnett,et al.  Studies on thermophilic cellulolytic fungi. , 1975, Applied microbiology.

[4]  G. Straatsma,et al.  Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost , 1993 .

[5]  P. B. Matheny Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). , 2005, Molecular phylogenetics and evolution.

[6]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[7]  Robert A. Samson,et al.  Ecology of Thermophilic Fungi in Mushroom Compost, with Emphasis on Scytalidium thermophilum and Growth Stimulation of Agaricus bisporus Mycelium , 1994, Applied and environmental microbiology.

[8]  A. Miller,et al.  Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined , 2004, Mycologia.

[9]  Liisa Viikari,et al.  Thermostable enzymes in lignocellulose hydrolysis. , 2007, Advances in biochemical engineering/biotechnology.

[10]  K. Hyde,et al.  Molecular systematics of Zopfiella and allied genera: evidence from multi-gene sequence analyses. , 2006, Mycological research.

[11]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[12]  María Jesús Martínez,et al.  Comparison of different fungal enzymes for bleaching high-quality paper pulps. , 2005, Journal of biotechnology.

[13]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[14]  Jason E Stajich,et al.  A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis , 2006, BMC Evolutionary Biology.

[15]  J. Mouchacca Thermophilic Fungi: Present Taxonomic Concepts , 1999 .

[16]  David M. Geiser,et al.  Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. , 2006, Mycologia.

[17]  Edward Susko,et al.  Testing congruence in phylogenomic analysis. , 2008, Systematic biology.

[18]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[19]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[20]  Ke-Qin Zhang,et al.  Diversity of thermophilic fungi in Tengchong Rehai national park revealed by ITS nucleotide sequence analyses , 2010, The Journal of Microbiology.

[21]  J. Rogers,et al.  An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. , 2006, Mycologia.

[22]  J. Walton,et al.  Improving Enzymes for Biomass Conversion: A Basic Research Perspective , 2010, BioEnergy Research.

[23]  J. Mouchacca Thermophilic fungi : Biodiversity and taxonomic status , 1997 .

[24]  J. van den Brink,et al.  Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus , 2011, Fungal Diversity.

[25]  S. Rehner,et al.  Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs , 1995 .

[26]  Long Wang,et al.  Phylogenetic analyses of penicillia based on partial calmodulin gene sequences , 2007, Biosyst..

[27]  Justin Powlowski,et al.  Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris , 2011, Nature Biotechnology.

[28]  R. Emerson,et al.  Thermophilic fungi. An account of their biology, activities, and classification. , 1964 .

[29]  J. Mouchacca Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes , 2000 .

[30]  J. Guarro,et al.  Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium , 2011, Studies in mycology.

[31]  Iosif I Vaisman,et al.  Discrimination of thermophilic and mesophilic proteins , 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop.

[32]  D. Geiser,et al.  The Monophyletic Plectomycetes: Ascosphaerales, Onygenales, Eurotiales , 2001 .

[33]  K. Seifert,et al.  Remersonia, a new genus for Stilbella thermophila, a thermophilic mould from compost , 1997 .

[34]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[35]  D. Hirose,et al.  The anamorphic genus Calcarisporiella is a new member of the Mucoromycotina , 2012, Mycoscience.

[36]  R. Salar,et al.  Thermophilic Fungi: Taxonomy and Biogeography , 2007 .

[37]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[38]  G. Haki,et al.  Developments in industrially important thermostable enzymes: a review. , 2003, Bioresource technology.

[39]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[40]  K. Hyde,et al.  Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. , 2006, Mycological research.

[41]  M. Tansey Agar-diffusion assay of cellulolytic ability of thermophilic fungi , 1971, Archiv für Mikrobiologie.

[42]  A. Stchigel,et al.  A re-evaluation of genus Chaetomidium based on molecular and morphological characters , 2009, Mycologia.

[43]  K. Hyde,et al.  Phylogenetic utility of protein (RPB2, β-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi) , 2007, Antonie van Leeuwenhoek.

[44]  T. Giraud,et al.  Assessing the performance of single-copy genes for recovering robust phylogenies. , 2008, Systematic biology.

[45]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[46]  L. Gianfreda,et al.  Potential of extra cellular enzymes in remediation of polluted soils: a review , 2004 .

[47]  S. Ghatora,et al.  Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials , 2008, Letters in applied microbiology.

[48]  T. Henkel,et al.  Pseudotulostoma , a remarkable new volvate genus in the Elaphomycetaceae from Guyana , 2001 .

[49]  O. Eriksson,et al.  SSU rDNA sequence support for a close relationship between the elaphomycetales and the Eurotiales and Onygenales , 1996 .

[50]  José C del Río,et al.  Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[51]  Conrad L Schoch,et al.  A phylogenomic analysis of the Ascomycota. , 2006, Fungal genetics and biology : FG & B.

[52]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[53]  Zhao Xu,et al.  A fungal phylogeny based on 82 complete genomes using the composition vector method , 2009, BMC Evolutionary Biology.

[54]  M. Madigan,et al.  Thermophilic and halophilic extremophiles. , 1999, Current opinion in microbiology.

[55]  S. Agathos,et al.  White-rot fungi and their enzymes for the treatment of industrial dye effluents. , 2003, Biotechnology advances.

[56]  J. Guarro,et al.  Genus Hamigera, six new species and multilocus DNA sequence based phylogeny , 2010, Mycologia.

[57]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[58]  Pernilla Turner,et al.  Potential and utilization of thermophiles and thermostable enzymes in biorefining , 2007, Microbial cell factories.

[59]  R. Maheshwari,et al.  Thermophilic Fungi: Their Physiology and Enzymes , 2000, Microbiology and Molecular Biology Reviews.

[60]  David Hewitt,et al.  A five-gene phylogeny of Pezizomycotina. , 2006, Mycologia.

[61]  H. Lumbsch,et al.  Outline of Ascomycota - 2007 , 2007 .

[62]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[63]  J. Pitt,et al.  Systematics of Penicillium and Aspergillus — Past, Present and Future , 1990 .

[64]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[65]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[66]  M. Réblová,et al.  Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales , 2011, Studies in mycology.

[67]  J. Mouchacca Thermophilic fungi and applied research: a synopsis of name changes and synonymies , 2000 .

[68]  P. Kirk,et al.  Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology , 2011, Applied Microbiology and Biotechnology.

[69]  J. Sugiyama,et al.  Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. , 1995 .