Highly precise time integration method for linear structural dynamic analysis

[1]  Y. Xing,et al.  An Improved Differential Quadrature Time Element Method , 2017 .

[2]  Kumar K. Tamma,et al.  A new unified theory underlying time dependent linear first‐order systems: a prelude to algorithms by design , 2004 .

[3]  Suchuan Dong,et al.  BDF-like methods for nonlinear dynamic analysis , 2010, J. Comput. Phys..

[4]  G. Dahlquist On accuracy and unconditional stability of linear multistep methods for second order differential equations , 1978 .

[5]  Kumar K. Tamma,et al.  Design spaces, measures and metrics for evaluating quality of time operators and consequences leading to improved algorithms by design—illustration to structural dynamics , 2005 .

[6]  Y. Xing,et al.  Differential quadrature time element method for structural dynamics , 2012 .

[7]  Daining Fang,et al.  A novel sub-step composite implicit time integration scheme for structural dynamics , 2017 .

[8]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[9]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[10]  W. Zhong,et al.  On precise integration method , 2004 .

[11]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[12]  Javad Alamatian,et al.  Implicit Higher-Order Accuracy Method for Numerical Integration in Dynamic Analysis , 2008 .

[13]  Mohammad Rezaiee-Pajand,et al.  A Mixed and Multi-Step Higher-Order Implicit Time Integration Family , 2010 .

[14]  Kumar K. Tamma,et al.  Algorithms by design with illustrations to solid and structural mechanics/dynamics , 2006 .

[15]  Ruxun Liu,et al.  A survey on symplectic and multi-symplectic algorithms , 2007, Appl. Math. Comput..

[16]  J. C. Simo,et al.  How to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation properties , 1994 .

[17]  S. M. Spottswood,et al.  A robust composite time integration scheme for snap-through problems , 2015 .

[18]  John C. Houbolt,et al.  A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft , 1950 .

[19]  Kumar K. Tamma,et al.  An Overview and Recent Advances in Vector and Scalar Formalisms: Space/Time Discretizations in Computational Dynamics—A Unified Approach , 2011 .

[20]  Jing Guo,et al.  A Time Finite Element Method Based on the Differential Quadrature Rule and Hamilton’s Variational Principle , 2017 .

[21]  Kumar K. Tamma,et al.  A theory of development and design of generalized integration operators for computational structural dynamics , 2001 .

[22]  Kumar K. Tamma,et al.  Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics , 2004 .

[23]  T. Fung Complex-time-step Newmark methods with controllable numerical dissipation , 1998 .

[24]  C. Runge Ueber die numerische Auflösung von Differentialgleichungen , 1895 .

[25]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[26]  Edward L. Wilson,et al.  A COMPUTER PROGRAM FOR THE DYNAMIC STRESS ANALYSIS OF UNDERGROUND STRUCTURES , 1968 .

[27]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .