Non-intrusive human activity monitoring in a smart home environment

Non-intrusive activity monitoring of occupants in a home environment plays an important role in developing the next generation of smart environments and remote health monitoring systems. One important challenge in this research area is lack of a comprehensive dataset. In this paper, we introduce a new dataset related to a smart home environment, which can be used for human activity recognition. In addition, we benchmark our proposed human action recognition algorithm and some other state-of-the-art methods using our dataset.

[1]  Victor C. M. Leung,et al.  Non-negative sparse coding for human action recognition , 2012, 2012 19th IEEE International Conference on Image Processing.

[2]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  SapiroGuillermo,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2010 .

[4]  Yang Hao,et al.  Wireless body sensor networks for health-monitoring applications , 2008, Physiological measurement.

[5]  Rémi Ronfard,et al.  Free viewpoint action recognition using motion history volumes , 2006, Comput. Vis. Image Underst..

[6]  Ig-Jae Kim,et al.  Mobile health monitoring system based on activity recognition using accelerometer , 2010, Simul. Model. Pract. Theory.

[7]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[8]  Yun Fu,et al.  Sparse Coding on Local Spatial-Temporal Volumes for Human Action Recognition , 2010, ACCV.

[9]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[10]  Cordelia Schmid,et al.  Evaluation of Local Spatio-temporal Features for Action Recognition , 2009, BMVC.

[11]  Jean Ponce,et al.  Learning mid-level features for recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Julien Mairal,et al.  Convex optimization with sparsity-inducing norms , 2011 .

[13]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[14]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[15]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  M. Alex O. Vasilescu,et al.  Recognizing action events from multiple viewpoints , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[17]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[19]  Cordelia Schmid,et al.  Actions in context , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Georges Quénot,et al.  TRECVID 2015 - An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics , 2011, TRECVID.

[21]  Le Li,et al.  SENSC: a Stable and Efficient Algorithm for Nonnegative Sparse Coding: SENSC: a Stable and Efficient Algorithm for Nonnegative Sparse Coding , 2009 .

[22]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.