GemPy 1.0: open-source stochastic geological modeling and inversion
暂无分享,去创建一个
Florian Wellmann | Miguel de la Varga | Alexander Schaaf | F. Wellmann | M. de la Varga | Alexander Schaaf
[1] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[2] Jef Caers,et al. Modeling Uncertainty in the Earth Sciences , 2011 .
[3] J. A. Mackay,et al. Responsible reporting of uncertain petroleum reserves , 2008 .
[4] A. Maréchal. Kriging Seismic Data in Presence of Faults , 1984 .
[5] A. Tarantola,et al. Inverse problems = Quest for information , 1982 .
[6] Louis B. Rall,et al. Automatic differentiation , 1981 .
[7] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[8] Steffen L. Lauritzen,et al. Independence properties of directed markov fields , 1990, Networks.
[9] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[10] J. Florian Wellmann,et al. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling , 2015 .
[11] J. Mallet. Space–Time Mathematical Framework for Sedimentary Geology , 2004 .
[12] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[13] J. Wellmann,et al. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models , 2012 .
[14] M. Dentith,et al. Geophysics for the Mineral Exploration Geoscientist , 2014 .
[15] John F. Ogilvie,et al. A monte-carlo approach to error propagation , 1984, Comput. Chem..
[16] R. Lark,et al. A statistical assessment of the uncertainty in a 3-D geological framework model , 2013 .
[17] M. Betancourt,et al. The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.
[18] John Weissmann,et al. What a machine , 2004 .
[19] C. Lajaunie,et al. Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation , 1997 .
[20] John Geweke,et al. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .
[21] Wes McKinney,et al. pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .
[22] Emmanuelle Gouillart,et al. scikit-image: image processing in Python , 2014, PeerJ.
[23] Andrew Gelman,et al. Automatic Variational Inference in Stan , 2015, NIPS.
[24] Samuel T. Thiele,et al. The topology of geology 1: Topological analysis , 2016 .
[25] William E. Lorensen,et al. The visualization toolkit (2nd ed.): an object-oriented approach to 3D graphics , 1998 .
[26] Z. Shipton,et al. What do you think this is? "Conceptual uncertainty" in geoscience interpretation , 2007 .
[27] M. Nabighian,et al. Historical development of the gravity method in exploration , 2005 .
[28] Christophe Aug,et al. Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel. (3D geological modelling and uncertainty: the potential-field method) , 2004 .
[29] Guillaume Caumon,et al. Towards Stochastic Time-Varying Geological Modeling , 2010 .
[30] J. Chilès,et al. Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules , 2008 .
[31] C. Chatfield. Model uncertainty, data mining and statistical inference , 1995 .
[32] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[33] S. Vajda,et al. Probabilistic Programming , 1972 .
[34] György Bárdossy. Evaluation of Uncertainties and Risks in Geology: New Mathematical Approaches for their Handling , 2010 .
[35] Hui Wang,et al. A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields , 2017, Mathematical Geosciences.
[36] C. Bond. Uncertainty in Structural Interpretation: Lessons to be learnt , 2015 .
[37] Carreño Carreño,et al. Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .
[38] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[39] George Christakos,et al. On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. , 2002 .
[40] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[41] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[42] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[43] Ítalo Gomes Gonçalves,et al. A machine learning approach to the potential-field method for implicit modeling of geological structures , 2017, Comput. Geosci..
[44] M. Betancourt,et al. The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.
[45] H. Durrant-Whyte,et al. A Bayesian inference tool for geophysical joint inversions , 2016 .
[46] Hans Wackernagel,et al. Multivariate Geostatistics: An Introduction with Applications , 1996 .
[47] William J. Schroeder,et al. Overview of Visualization , 2005, The Visualization Handbook.
[48] P. Jaccard. THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .
[49] M. Jessell,et al. Towards an integrated inversion of geoscientific data: What price of geology? , 2010 .
[50] Utkarsh Ayachit,et al. The ParaView Guide: A Parallel Visualization Application , 2015 .
[51] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[52] Nir Friedman,et al. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .
[53] David Huard,et al. PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.
[54] F. Horowitz,et al. Towards incorporating uncertainty of structural data in 3D geological inversion , 2010 .
[55] Guillaume Caumon,et al. 3-D Structural geological models: Concepts, methods, and uncertainties , 2018 .
[56] William Schroeder,et al. The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .
[57] Awad Aubad,et al. Towards a framework building for social systems modelling , 2020 .
[58] D. Nagy. The gravitational attraction of a right rectangular prism , 1966 .
[59] M. Jessell,et al. Making the link between geological and geophysical uncertainty: geodiversity in the Ashanti Greenstone Belt , 2013 .
[60] Christopher M. Bishop,et al. Model-based machine learning , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[61] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[62] L. Dagum,et al. OpenMP: an industry standard API for shared-memory programming , 1998 .
[63] Dustin Tran,et al. Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..
[64] Arie Shoshani,et al. Optimizing connected component labeling algorithms , 2005, SPIE Medical Imaging.
[65] Christophe Fiorio,et al. Two Linear Time Union-Find Strategies for Image Processing , 1996, Theor. Comput. Sci..
[66] Joel S. Cohen,et al. Computer Algebra and Symbolic Computation: Mathematical Methods , 2003 .
[67] J. Chilès,et al. Modelling the geometry of geological units and its uncertainty in 3D from structural data: The potential-field method , 2007 .
[68] J. Wellmann,et al. Structural geologic modeling as an inference problem: A Bayesian perspective , 2016 .
[69] Albert Tarantola,et al. Monte Carlo sampling of solutions to inverse problems , 1995 .
[70] M. Jessell,et al. Geodiversity: Exploration of 3D geological model space , 2013 .
[71] Louis B. Rall,et al. Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.
[72] E. Schetselaar,et al. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions , 2014, Mathematical Geosciences.
[73] Barak A. Pearlmutter,et al. Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..
[74] M. Jessell,et al. Uncertainty estimation for a geological model of the Sandstone greenstone belt, Western Australia – insights from integrated geological and geophysical inversion in a Bayesian inference framework , 2017, Special Publications.
[75] Michael I. Jordan. Learning in Graphical Models , 1999, NATO ASI Series.
[76] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[77] N. Bohr. MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .
[78] J. Florian Wellmann,et al. Validating 3-D structural models with geological knowledge for improved uncertainty evaluations , 2014 .
[79] John Salvatier,et al. Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.
[80] B. Kaus,et al. Recent advances in computational geodynamics: Theory, numerics and applications , 2008 .
[81] G. Caumon,et al. Surface-Based 3D Modeling of Geological Structures , 2009 .
[82] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[83] Samuel T. Thiele,et al. The topology of geology 2: Topological uncertainty , 2016 .
[84] Guillaume Caumon,et al. Three-Dimensional Implicit Stratigraphic Model Building From Remote Sensing Data on Tetrahedral Meshes: Theory and Application to a Regional Model of La Popa Basin, NE Mexico , 2013, IEEE Transactions on Geoscience and Remote Sensing.
[85] M. Jessell,et al. Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia , 2012 .
[86] Lindsey J. Heagy,et al. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications , 2015, Comput. Geosci..
[87] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[88] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[89] H. Wackernagle,et al. Multivariate geostatistics: an introduction with applications , 1998 .