On the complexity of cutting-plane proofs

Abstract As introduced by Chvatal, cutting planes provide a canonical way of proving that every integral solution of a given system of linear inequalities satisfies another specified inequality. In this note we make several observations on the complexity of such proofs in general and when restricted to proving the unsatisfiability of formulae in the propositional calculus.

[1]  Bruce Lercher,et al.  Recursive Number Theory , 1958, The Mathematical Gazette.

[2]  Ravi Kannan,et al.  Improved algorithms for integer programming and related lattice problems , 1983, STOC.

[3]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[4]  Vasek Chvátal Cutting Planes in Combinatorics , 1985, Eur. J. Comb..

[5]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[6]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[7]  David E. Bell A Theorem Concerning the Integer Lattice , 1977 .

[8]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[9]  Vasek Chvátal,et al.  Edmonds polytopes and weakly hamiltonian graphs , 1973, Math. Program..

[10]  Herbert E. Scarf An observation on the structure of production sets with indivisibilities , 1977 .

[11]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[12]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[13]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[14]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[15]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[16]  M. Dowd,et al.  Propositional representation of arithmetic proofs , 1979 .

[17]  Michael Todd The Number of Necessary Constraints in an Integer Program: A New Proof of Scarf's Theorem , 1977 .

[18]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[19]  A. J. Hoffman BINDING CONSTRAINTS AND HELLY NUMBERS , 1979 .

[20]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..