Continuous Newton-Euler Algorithms for Geometrically Exact Flexible Beams
暂无分享,去创建一个
[1] S. Timoshenko,et al. Theory of elasticity , 1975 .
[2] Frédéric Boyer,et al. Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.
[3] Wisama Khalil,et al. Modeling, Identification & Control of Robots , 2002 .
[4] E. Haug,et al. A recursive formulation for flexible multibody dynamics, Part I: open-loop systems , 1988 .
[5] P. Appell. Traité de Mécanique rationnelle , 1896 .
[6] Wayne J. Book,et al. Symbolic modeling of flexible manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.
[7] P. Appell. Sur une forme générale des équations de la dynamique. , 1900 .
[8] W. H. Reid,et al. The Theory of Elasticity , 1960 .
[9] Arthur E. Bryson,et al. Applied Optimal Control , 1969 .
[10] R. Featherstone. The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .
[11] W. Book. Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .
[12] J. C. Simo,et al. On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .
[13] Bruce M. Adcock,et al. Force transmission via axial tendons in undulating fish: a dynamic analysis. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
[14] G. B. Sincarsin,et al. Dynamics of an elastic multibody chain: part a—body motion equations , 1989 .
[15] Christopher J. Damaren,et al. The relationship between recursive multibody dynamics and discrete-time optimal control , 1991, IEEE Trans. Robotics Autom..
[16] G. B. Sincarsin,et al. Dynamics of an elastic multibody chain: Part B—Global dynamics , 1989 .
[17] Georges Le Vey. Optimal control theory and Newton–Euler formalism for Cosserat beam theory , 2006 .
[18] Frédéric Boyer,et al. Symbolic modeling of a flexible manipulator via assembling of its generalized Newton Euler model , 1996 .
[19] E. Cosserat,et al. Théorie des Corps déformables , 1909, Nature.
[20] J. Y. S. Luh,et al. On-Line Computational Scheme for Mechanical Manipulators , 1980 .
[21] R. Singh,et al. Dynamics of flexible bodies in tree topology - A computer oriented approach , 1984 .
[22] Linda R. Petzold,et al. Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.
[23] 広瀬 茂男,et al. Biologically inspired robots : snake-like locomotors and manipulators , 1993 .
[24] Javier Audry-Sanchez. On the numerical solution of differential algebraic equations , 1988 .