Continuous Newton-Euler Algorithms for Geometrically Exact Flexible Beams

A Newton-Euler formalism is derived for geometrically exact Cosserat beam theory in a purely deductive manner, thanks to an analogy with optimal control theory. The method relies upon a joint use of Gauss least constraint principle, Appell's equations and optimal control theory, that was used in a previous work for the classical case of discrete Newton-Euler backward and forward recursions for multibody systems. Motivating applications are hyper-redundant manipulators or biomimetic robots such as eel-robots, undergoing large displacements

[1]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[2]  Frédéric Boyer,et al.  Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.

[3]  Wisama Khalil,et al.  Modeling, Identification & Control of Robots , 2002 .

[4]  E. Haug,et al.  A recursive formulation for flexible multibody dynamics, Part I: open-loop systems , 1988 .

[5]  P. Appell Traité de Mécanique rationnelle , 1896 .

[6]  Wayne J. Book,et al.  Symbolic modeling of flexible manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[7]  P. Appell Sur une forme générale des équations de la dynamique. , 1900 .

[8]  W. H. Reid,et al.  The Theory of Elasticity , 1960 .

[9]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[10]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[11]  W. Book Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .

[12]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[13]  Bruce M. Adcock,et al.  Force transmission via axial tendons in undulating fish: a dynamic analysis. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[14]  G. B. Sincarsin,et al.  Dynamics of an elastic multibody chain: part a—body motion equations , 1989 .

[15]  Christopher J. Damaren,et al.  The relationship between recursive multibody dynamics and discrete-time optimal control , 1991, IEEE Trans. Robotics Autom..

[16]  G. B. Sincarsin,et al.  Dynamics of an elastic multibody chain: Part B—Global dynamics , 1989 .

[17]  Georges Le Vey Optimal control theory and Newton–Euler formalism for Cosserat beam theory , 2006 .

[18]  Frédéric Boyer,et al.  Symbolic modeling of a flexible manipulator via assembling of its generalized Newton Euler model , 1996 .

[19]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[20]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[21]  R. Singh,et al.  Dynamics of flexible bodies in tree topology - A computer oriented approach , 1984 .

[22]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[23]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[24]  Javier Audry-Sanchez On the numerical solution of differential algebraic equations , 1988 .