Motion-Based Mechanisms of Illusory Contour Synthesis

Neurophysiological studies and computational models of illusory contour formation have focused on contour orientation as the underlying determinant of illusory contour shape in both static and moving displays. Here, we report a class of motion-induced illusory contours that demonstrate the existence of novel mechanisms of illusory contour synthesis. In a series of experiments, we show that the velocity of contour terminations and the direction of motion of a partially occluded figure regulate the perceived shape and apparent movement of illusory contours formed from moving image sequences. These results demonstrate the existence of neural mechanisms that reconstruct occlusion relationships from both real and inferred image velocities, in contrast to the static geometric mechanisms that have been the focus of studies to date.

[1]  L. Spillmann,et al.  Brightness Matching, Brightness Cancellation, and Increment Threshold in the Ehrenstein Illusion , 1984, Perception.

[2]  P. Kellman,et al.  Strength of visual interpolation depends on the ratio of physically specified to total edge length , 1992, Perception & psychophysics.

[3]  M Bertamini,et al.  Identifying contours from occlusion events , 1990, Perception & psychophysics.

[4]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[5]  L. Finkel,et al.  Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[7]  I. Rock,et al.  Illusory Contours as the Solution to a Problem , 1979, Perception.

[8]  M T Swanston,et al.  The Representation of Nonuniform Motion: Induced Movement , 1987, Perception.

[9]  P. Kellman,et al.  Perception of Partly Occluded Objects and Illusory Figures : Evidence for an Identity Hypothesis , 2004 .

[10]  A. Yonas,et al.  Kinetic occlusion: Further studies of the boundary-flow cue , 1990, Perception & psychophysics.

[11]  K. Nakayama,et al.  Single visual neurons code opposing motion independent of direction. , 1983, Science.

[12]  S Petry,et al.  Evidence for Independent Processing of Subjective Contour Brightness and Sharpness , 1991, Perception.

[13]  K. Nakayama,et al.  Relative motion induced between stationary lines , 1978, Vision Research.

[14]  Susan T. Dumais,et al.  The effects of illumination level and retinal size on the apparent strength of subjective contours , 1976 .

[15]  Ennio Mingolla,et al.  The role of edges and line-ends in illusory contour formation , 1993, Vision Research.

[16]  R. Tennant,et al.  Inhibition of leukaemia virus replication by polyadenylic acid. , 1972, Nature: New biology.

[17]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[18]  E M Brussell,et al.  Sensory information and subjective contour. , 1977, The American journal of psychology.

[19]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[20]  Robert Sekuler,et al.  Simultaneous motion contrast: Velocity, sensitivity and depth response , 1975, Vision Research.

[21]  G J Andersen,et al.  2-D contour perception resulting from kinetic occlusion , 1989, Perception & psychophysics.

[22]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[23]  R. B. Post,et al.  A reevaluation of the effect of velocity on induced motion , 1989, Perception & psychophysics.

[24]  George A. Kaplan,et al.  Kinetic disruption of optical texture: The perception of depth at an edge , 1969 .

[25]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[26]  M. Wertheimer,et al.  A source book of Gestalt psychology. , 1939 .

[27]  A H Reinhardt-Rutland,et al.  Peripheral Movement, Induced Movement, and Aftereffects from Induced Movement , 1981, Perception.

[28]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  H. Jones,et al.  Context-dependent interactions and visual processing in V1 , 1996, Journal of Physiology-Paris.

[30]  Leif H. Finkel,et al.  Object Discrimination Based on Depth-from-Occlusion , 1992, Neural Computation.

[31]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[32]  K. Duncker,et al.  Über induzierte Bewegung , 1929 .

[33]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985 .

[34]  W Gerbino,et al.  Illusory Figures Based on Local Kinematics , 1991, Perception.

[35]  S. Anstis,et al.  Interactions between motion aftereffects and induced movement , 1976, Vision Research.

[36]  R. Gregory,et al.  Cognitive Contours , 1972, Nature.

[37]  Roger B. H. Tootell,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1992, Nature.

[38]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[39]  W. B. Thompson,et al.  Relative motion: Kinetic information for the order of depth at an edge , 1987, Perception & psychophysics.

[40]  A H Reinhardt-Rutland Aftereffect of Induced Rotation: Separation of Inducing and Static Areas, and Monocular Component , 1983, Perceptual and motor skills.

[41]  R. Nijhawan,et al.  Visual decomposition of colour through motion extrapolation , 1997, Nature.

[42]  P J Kellman,et al.  Kinetic subjective contours , 1984, Perception & psychophysics.

[43]  Stanley A. Klein,et al.  Extrapolation or attention shift? , 1995, Nature.

[44]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[45]  W. B. Pillsbury Beiträge zur Analyse der Gesichtswahrnehmungen , 1900 .

[46]  R. Sekuler,et al.  Assimilation and contrast in motion perception: Explorations in cooperativity , 1990, Vision Research.

[47]  G. Orban,et al.  Laminar analysis of motion information processing in macaque V5 , 1989, Brain Research.

[48]  Romi Nijhawan,et al.  Extrapolation or attention shift? , 1995, Nature.

[49]  B L Anderson,et al.  Reciprocal interactions between occlusion and motion computations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Orban,et al.  Influence of a moving textured background on direction selectivity of cat striate neurons. , 1987, Journal of neurophysiology.