High-Fidelity Hydrostructural Design Optimization of Lifting Surfaces

Recent advances in high-performance computing and the efficiency of numerical solvers have made it possible to use sequential high-fidelity hydrodynamic and structural simulations to carry out design and optimization of marine lifting surfaces such as hydrofoils and propulsors. However, the design optimization of flexible hydrofoils and propellers requires coupled hydrodynamic and structural analysis to achieve a truly optimal, physically realizable, and structurally sound design. To address this need, the thesis presents an efficient high-fidelity hydrostructural design optimization with large numbers of design variables, multiple design points, as well as design constraints to avoid cavitation, avoid excessive stresses, and satisfy manufacturing tolerances. The hydrostructural solver couples a 3-D nearly incompressible Reynolds-averaged Navier–Stokes solver with a 3-D structural finite-element solver. The hydrostructural solver is validated by comparing the hydrodynamic load coefficients and tip bending deformations of a cantilevered aluminum hydrofoil with a NACA 0009 cross section and a trapezoidal planform. A coupled adjoint approach for efficient computation of the performance and constraint function derivatives with respect to 210 shape design variables is used. Using this state-of-the-art hydrostructural design optimization tool, a multipoint optimization yields improved performance over the entire range of expected operating conditions with significantly increased cavitation inception speed. The hydrostructural optimal result is compared to an equivalent hydrodynamiconly optimization, and results show that only the hydrostructural optimized design satisfies the stress constraint up to the highest expected loading condition, highlighting the need for coupled hydrostructural optimization. The proposed approach enables multipoint optimization of the hydrostructural performance for hydrofoils and marine propulsors, and it constitutes a powerful new tool for improving existing designs, and exploring new con-

[1]  Michael R. Motley,et al.  Free surface and solid boundary effects on the free vibration of cantilevered composite plates , 2013 .

[2]  Jean-François Sigrist,et al.  An experimental analysis of fluid structure interaction on a flexible hydrofoil in various flow regimes including cavitating flow , 2012 .

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  Yin Lu Young,et al.  Effect of material design parameters on the forced vibration response of composite hydrofoils in air and in water , 2017 .

[5]  Jean-François Sigrist,et al.  Numerical and Experimental Investigation of Hydrodynamic Characteristics of Deformable Hydrofoils , 2009 .

[6]  Yin Lu Young,et al.  Cavity induced vibration of flexible hydrofoils , 2014 .

[7]  Paris Federico,et al.  A Study of Failure Criteria of Fibrous Composite Materials , 2001 .

[8]  Yin Lu Young,et al.  High-fidelity Hydrodynamic Shape Optimization of a 3-D Morphing Hydrofoil , 2016 .

[9]  Paul A. Brandner,et al.  Experimental study of the steady fluid-structure interaction of flexible hydrofoils , 2014 .

[10]  Jerald M. Vogel,et al.  Effects of Bend–Twist Coupling on Composite Propeller Performance , 2000 .

[11]  Yin Lu Young,et al.  Parametric excitations and lock-in of flexible hydrofoils in two-phase flows , 2015 .

[12]  Joaquim R. R. A. Martins,et al.  High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil , 2017 .

[13]  Michael R. Motley,et al.  Performance-based design and analysis of flexible composite propulsors , 2011 .

[14]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[15]  Ya-Jung Lee,et al.  Optimized Design of Composite Propeller , 2004 .

[16]  S. Kinnas,et al.  Non-Linear Analysis of the Flow Around Partially or Super-Cavitating Hydrofoils by a Potential Based Panel Method , 1991 .

[17]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[18]  Jack W. Baker,et al.  Reliability-based design and optimization of adaptive marine structures , 2010 .

[19]  Andy P. Broeren,et al.  Experiments on airfoils at low reynolds numbers , 1996 .

[20]  Dewey H. Hodges,et al.  Performance Enhancement of a Composite Tilt-Rotor Using Aeroelastic Tailoring , 2000 .

[21]  J. Berthelot,et al.  Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading , 2003 .

[22]  Brian Lau Verndal Bak,et al.  Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods , 2014 .

[23]  Con J. Doolan,et al.  Hydroacoustic Characterisation of the AMC Cavitation Tunnel , 2013 .

[24]  S. Ceccio,et al.  Study of Cavitation Shedding Dynamics on a NACA0015 Hydrofoil Using X-Ray Densitometry , 2016 .

[25]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[26]  Paul A. Brandner,et al.  High-speed full-field deflection measurements on a hydrofoil using digital image correlation , 2014 .

[27]  Joaquim R. R. A. Martins,et al.  Aerostructural optimization of the common research model configuration , 2014 .

[28]  Ya-Jung Lee,et al.  Optimization and experiment of composite marine propellers , 2009 .

[29]  Allan J. Acosta,et al.  A Note on Partial Cavitation of Flat Plate Hydrofoils , 1955 .

[30]  Joaquim R. R. A. Martins,et al.  Simultaneous optimization of propeller–hull systems to minimize lifetime fuel consumption , 2013 .

[31]  Eastman N. Jacobs,et al.  Airfoil section characteristics as affected by variations of the Reynolds number , 1939 .

[32]  Kyriakos C. Giannakoglou,et al.  The continuous adjoint method for the design of hydraulic turbomachines , 2014 .

[33]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[34]  François Avellan,et al.  Fluid–structure coupling for an oscillating hydrofoil , 2010 .

[35]  Ya-Jung Lee,et al.  Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement , 2004 .

[36]  Matthew R. Kramer,et al.  An Integrated Probability-Based Propulsor-Hull Matching Methodology , 2013 .

[37]  Matthew R. Kramer,et al.  Free vibration of cantilevered composite plates in air and in water , 2013 .

[38]  J. Martins,et al.  Benchmarking Optimization Algorithms for Wing Aerodynamic Design Optimization , 2014 .

[39]  Mario A. Rotea,et al.  Passive structural control of offshore wind turbines , 2011 .

[40]  Alireza Maheri,et al.  Performance prediction of wind turbines utilizing passive smart blades: approaches and evaluation , 2010 .

[41]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[42]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[43]  Y. L. Young,et al.  Ventilated cavities on a surface-piercing hydrofoil at moderate Froude numbers: cavity formation, elimination and stability , 2016, Journal of Fluid Mechanics.

[44]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[45]  Y. L. Young,et al.  Ventilation of Lifting Bodies: Review of the Physics and Discussion of Scaling Effects , 2017 .

[46]  R. Liem,et al.  Expected drag minimization for aerodynamic design optimization based on aircraft operational data , 2017 .

[47]  M. Tulin,et al.  Steady two-dimensional cavity flows about slender bodies / , 1960 .

[48]  조진수,et al.  효율향상을 위한 프로펠러 형상의 최적 설계 ( Propeller Blade Shape Optimization for Efficiency Improvement ) , 1995 .

[49]  Paul S. Veers,et al.  AEROELASTIC BEHAVIOR OF TWIST-COUPLED HAWT BLADES , 1998 .

[50]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[51]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[52]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[53]  Gunjit Bir,et al.  The Use of Twist-Coupled Blades to Enhance the Performance of Horizontal Axis Wind Turbines , 2001 .

[54]  Stephen W. Tsai,et al.  Anisotropic strength of composites , 1965 .

[55]  K. R. Cooper,et al.  DRAG, LIFT AND PITCHING MOMENT INCREMENTS DUE TO WIND TUNNEL WALL CONSTRAINT: EXTENSION TO THREE DIMENSIONS , 2000 .

[56]  Ira H. Abbott,et al.  Summary of Airfoil Data , 1945 .

[57]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[58]  Paul S. Veers,et al.  Aeroelastic tailoring in wind-turbine blade applications , 1998 .

[59]  Ya-Jung Lee,et al.  Regression of the response surface of laminated composite structures , 2003 .

[60]  Michael R. Motley,et al.  Integrated probabilistic design of marine propulsors to minimize lifetime fuel consumption , 2012 .

[61]  Nondestructive Evaluation of Mechanically Loaded Advanced Marine Composite Structures , 2014 .

[62]  Yin Lu Young,et al.  Time-dependent hydroelastic analysis of cavitating propulsors , 2007 .

[63]  Y. L. Young,et al.  The influence of bend-twist coupling on the dynamic response of cavitating composite hydrofoils , 2017 .

[64]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[65]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[66]  Gregory A. Wrenn,et al.  An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function , 1989 .

[67]  José Pedro Albergaria Amaral Blasques,et al.  Hydro-elastic analysis and optimization of a composite marine propeller , 2010 .

[68]  Yin Lu Young,et al.  Fluid–structure interaction analysis of flexible composite marine propellers , 2008 .

[69]  Gregory J. Walker,et al.  Design Considerations in the Development of a Modern Cavitation Tunnel , 2007 .

[70]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[71]  Michael R. Motley,et al.  Utilizing fluid-structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake , 2009 .

[72]  Gert Kuiper,et al.  Blade Section Design of Marine Propellers with Maximum Cavitation Inception Speed , 2012 .

[73]  Manudha T. Herath,et al.  Effect of material anisotropy on the structural response of flexible composite hydrofoils , 2015 .

[74]  T. Mueller,et al.  Experimental Studies of Separation on a Two-Dimensional Airfoil at Low Reynolds Numbers , 1982 .

[75]  C. Merkle,et al.  Dual time-stepping and preconditioning for unsteady computations , 1995 .

[76]  H. C. Garner,et al.  SUBSONIC WIND TUNNEL WALL CORRECTIONS , 1966 .

[77]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[78]  Yin Lu Young,et al.  Rate-dependent hydroelastic response of self-adaptive composite propellers in fully wetted and cavitating flows , 2009 .

[79]  Stephen R. Turnock,et al.  Application of bend-twist coupled blades for horizontal axis tidal turbines , 2013 .

[80]  Graeme J. Kennedy,et al.  An evaluation of constraint aggregation strategies for wing box mass minimization , 2017 .

[81]  Eli Turkel,et al.  Assessment of Preconditioning Methods for Multidimensional Aerodynamics , 1997 .

[82]  Michael R. Motley,et al.  Cavitating response of passively controlled tidal turbines , 2016 .

[83]  Y. L. Young,et al.  Hydroelastic response and stability of a hydrofoil in viscous flow , 2013 .

[84]  Michael R. Motley,et al.  Adaptive Composite Marine Propulsors and Turbines: Progress and Challenges , 2016 .

[85]  Jeffrey V. Zweber,et al.  Design of Flutter Characteristics of Composite Wings Using Frequency Constraint Optimization , 2003 .

[86]  Zenon Mróz,et al.  Variational approach by means of adjoint systems to structural optimization and sensitivity analysis—I: Variation of material parameters within fixed domain , 1983 .

[87]  Yin Lu Young,et al.  Influence of flow-induced bend–twist coupling on the natural vibration responses of flexible hydrofoils , 2017 .

[88]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[89]  S A Kinnas,et al.  A NUMERICAL OPTIMIZATION TECHNIQUE APPLIED TO THE DESIGN OF TWO- DIMENSIONAL CAVITATING HYDROFOIL SECTIONS , 1996 .

[90]  Yin Lu Young,et al.  Static divergence of self-twisting composite rotors , 2010 .

[91]  Michael R. Motley,et al.  Passive control of marine hydrokinetic turbine blades , 2014 .

[92]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[93]  Adrian P. Mouritz,et al.  Review of advanced composite structures for naval ships and submarines , 2001 .

[94]  Venkata M. K. Akula,et al.  Review of Degradation Models for Progressive Failure Analysis of Fiber Reinforced Polymer Composites , 2009 .

[95]  Michael R. Motley,et al.  Influence of uncertainties on the response and reliability of self-adaptive composite rotors , 2011 .

[96]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[97]  John A. Green,et al.  Aeroelastic tailoring of aft-swept high-aspect-ratio composite wings , 1987 .

[98]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[99]  Yin Lu Young,et al.  Influence of cavitation on the hydroelastic stability of hydrofoils , 2014 .

[100]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .

[101]  Dayton A. Griffin Evaluation of Design Concepts for Adaptive Wind Turbine Blades , 2002 .

[102]  Alireza Maheri,et al.  Application of combined analytical/FEA coupled aero-structure simulation in design of wind turbine adaptive blades , 2007 .

[103]  Charles Merkle,et al.  Time-accurate unsteady incompressible flow algorithms based on artificial compressibility , 1987 .

[104]  J. Martins,et al.  Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization , 2017 .

[105]  C. Brennen Cavitation and Bubble Dynamics: Preface , 2013 .

[106]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[107]  Terry Brockett MINIMUM PRESSURE ENVELOPES FOR MODIFIED NACA-66 SECTIONS WITH NACA A=0.8 CAMBER AND BUSHIPS TYPE 1 AND TYPE 2 SECTIONS , 1966 .

[108]  Yin Lu Young,et al.  Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils , 2016 .

[109]  Zenon Mróz,et al.  Variational approach by means of adjoint systems to structural optimization and sensitivity analysis—II: Structure shape variation , 1984 .

[110]  Mateusz M. Pluciński,et al.  Optimization of a self-twisting composite marine propeller using genetic algorithms , 2007 .

[111]  Michael R. Motley,et al.  Three-dimensional numerical modeling of the transient fluid-structural interaction response of tidal turbines , 2010 .

[112]  Joaquim R. R. A. Martins,et al.  Performance Evaluation of a Morphing Trailing Edge Using Multipoint Aerostructural Design Optimization , 2016 .

[113]  Ugo Icardi,et al.  Assessment of Recent Theories for Predicting Failure of Composite Laminates , 2007 .

[114]  Rune Brincker,et al.  Modal identification of output-only systems using frequency domain decomposition , 2001 .

[115]  Beom-Soo Hyun,et al.  Investigation on the performance characteristics of the flexible propellers , 2013 .

[116]  W J Calclough,et al.  DEVELOPMENT OF A COMPOSITE PROPELLER BLADE WITH A CARBON FIBRE REINFORCED PLASTICS SPAR , 1972 .

[117]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[118]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of the Common Research Model Wing-Body-Tail Configuration , 2015 .

[119]  Joaquim R. R. A. Martins,et al.  High-Fidelity Hydrodynamic Shape Optimization of a 3-D Hydrofoil , 2015 .

[120]  Stephen R. Turnock,et al.  Performance prediction of a free stream tidal turbine with composite bend-twist coupled blades , 2008 .

[121]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[122]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[123]  Rodney S. Thomson,et al.  Review of methodologies for composite material modelling incorporating failure , 2008 .

[124]  Peretz P. Friedmann,et al.  Aeroelastic tailoring analysis for preliminary design of advanced propellers with composite blades , 1993 .

[125]  J. Corbett,et al.  Updated emissions from ocean shipping , 2003 .

[126]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .

[127]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[128]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[129]  Young T. Shen,et al.  WING SECTIONS FOR HYDROFOILS--PART 1: SYMMETRICAL PROFILES , 1979 .

[130]  W. Van Paepegem,et al.  Fatigue Damage Modeling Techniques for Textile Composites: Review and Comparison With Unidirectional Composite Modeling Techniques , 2015 .

[131]  R. Hill The mathematical theory of plasticity , 1950 .

[132]  Yin Lu Young,et al.  Utilization of bend–twist coupling for performance enhancement of composite marine propellers , 2009 .

[133]  D. Hänel,et al.  A dual time-stepping method for 3-D, viscous, incompressible vortex flows , 1993 .