A new metaheuristic algorithm for continuous engineering optimization : harmony search theory and practice

Most engineering optimization algorithms are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithms, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search (HS) meta-heuristic algorithm-based approach for engineering optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Various engineering optimization problems, including mathematical function minimization and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to engineering problems than those obtained using current algorithms. 2004 Elsevier B.V. All rights reserved.

[1]  A. Ravindran,et al.  Engineering Optimization: Methods and Applications , 2006 .

[2]  J. A. Lozano,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[3]  Xin Yao,et al.  The Evolution of Evolutionary Computation , 2003, KES.

[4]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[5]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[6]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[7]  Fernando G. Lobo,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[8]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[9]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[10]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[11]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[12]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  David E. Goldberg,et al.  The compact genetic algorithm , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[15]  Jiaping Yang,et al.  Structural Optimization by Genetic Algorithms with Tournament Selection , 1997 .

[16]  S Rajeev,et al.  GENETIC ALGORITHMS - BASED METHODOLOGY FOR DESIGN OPTIMIZATION OF TRUSSES , 1997 .

[17]  S. Mohan,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .

[18]  Katya Scheinberg,et al.  On the convergence of derivative-free methods for unconstrained optimization , 1997 .

[19]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[20]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[21]  Chee Kiong Soh,et al.  Fuzzy Controlled Genetic Algorithm Search for Shape Optimization , 1996 .

[22]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[23]  Jia Ping. Yang,et al.  Development of genetic algorithm based approach for structural optimisation , 1996 .

[24]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[25]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[26]  David B. Fogel,et al.  A Comparison of Evolutionary Programming and Genetic Algorithms on Selected Constrained Optimization Problems , 1995, Simul..

[27]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .

[28]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[29]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[30]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[31]  Jaewan Yoon,et al.  Parameter Estimation of Linear and Nonlinear Muskingum Models , 1993 .

[32]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[33]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[34]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[35]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[36]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[37]  Y. Tung River flood routing by nonlinear muskingum method , 1985 .

[38]  Frank P. Hwang,et al.  A comparative study of nonlinear programming routines on the microcomputer versus the large computer , 1984 .

[39]  B. H. V. Topping,et al.  Shape Optimization of Skeletal Structures: A Review , 1983 .

[40]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[41]  M. A. Gill Flood routing by the Muskingum method , 1978 .

[42]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[43]  M. W. Dobbs,et al.  Application of optimality criteria to automated structural design , 1976 .

[44]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[45]  L. Schmit,et al.  Approximation concepts for efficient structural synthesis , 1976 .

[46]  Paulo Rizzi,et al.  Optimization of multi-constrained structures based on optimality criteria , 1976 .

[47]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[48]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[49]  R. G. Fenton,et al.  A Comparison of Numerical Optimization Methods for Engineering Design , 1974 .

[50]  L. A. Schmit,et al.  Some approximation concepts for structural synthesis , 1973 .

[51]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[52]  James N. Siddall,et al.  Analytical decision-making in engineering design , 1972 .

[53]  J. F. Price,et al.  On descent from local minima , 1971 .

[54]  V. Venkayya Design of optimum structures , 1971 .

[55]  G. McCormick,et al.  Selected applications of nonlinear programming , 1968 .

[56]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[57]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[58]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.