Entanglement classification of four-partite states under the SLOCC
暂无分享,去创建一个
Jun-Li Li | S. M. Zangi | Cong-Feng Qiao | C. Qiao | S. Zangi | Congyu Qiao | Jun‐Li Li
[1] Liangliang Sun,et al. Classification of the entangled states of 2×L×M×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times L \times M \ , 2014, Quantum Information Processing.
[2] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[3] Weinfurter,et al. Dense coding in experimental quantum communication. , 1996, Physical review letters.
[4] Z. D. Wang,et al. Multipartite entanglement in four-qubit cluster-class states , 2007, 0709.4642.
[5] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[6] M. Zhao,et al. Criterion for SLOCC equivalence of multipartite quantum states , 2016, 1609.05987.
[7] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[8] Matthias Christandl,et al. Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.
[9] S. Braunstein,et al. Quantum Information with Continuous Variables , 2004, quant-ph/0410100.
[10] Junli Li,et al. Classification of the entangled states of 2 × N × N , 2008, 0804.2291.
[11] Jun-Li Li,et al. Classification of the entangled states 2 × M × N , 2009, Quantum Information Processing.
[12] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[13] Chi-Kwong Li,et al. Linear Preserver Problems , 2001, Am. Math. Mon..
[14] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[15] Dafa Li,et al. Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. , 2011, Physical review letters.
[16] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[17] L. Lamata,et al. Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.
[18] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[19] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[20] Bin Liu,et al. Local unitary classification of arbitrary dimensional multipartite pure states. , 2011, Physical review letters.
[21] N. Wallach,et al. Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.
[22] C. Loan. The ubiquitous Kronecker product , 2000 .