Entanglement classification of four-partite states under the SLOCC

We present a practical classification scheme for the four-partite entangled states under stochastic local operations and classical communication (SLOCC). By transforming a four-partite state into a triple-state set composed of two tripartite and one bipartite states, the entanglement classification is reduced to the classification of tripartite and bipartite entanglements. This reduction method has the merit of involving only the linear constrains, and meanwhile providing an insight into the entanglement character of the subsystems.

[1]  Liangliang Sun,et al.  Classification of the entangled states of 2×L×M×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times L \times M \ , 2014, Quantum Information Processing.

[2]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[3]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[4]  Z. D. Wang,et al.  Multipartite entanglement in four-qubit cluster-class states , 2007, 0709.4642.

[5]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[6]  M. Zhao,et al.  Criterion for SLOCC equivalence of multipartite quantum states , 2016, 1609.05987.

[7]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[8]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[9]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[10]  Junli Li,et al.  Classification of the entangled states of 2 × N × N , 2008, 0804.2291.

[11]  Jun-Li Li,et al.  Classification of the entangled states 2 × M × N , 2009, Quantum Information Processing.

[12]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[13]  Chi-Kwong Li,et al.  Linear Preserver Problems , 2001, Am. Math. Mon..

[14]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[15]  Dafa Li,et al.  Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. , 2011, Physical review letters.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  L. Lamata,et al.  Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[20]  Bin Liu,et al.  Local unitary classification of arbitrary dimensional multipartite pure states. , 2011, Physical review letters.

[21]  N. Wallach,et al.  Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.

[22]  C. Loan The ubiquitous Kronecker product , 2000 .