Pattern Recognition and Machine Intelligence: 8th International Conference, PReMI 2019, Tezpur, India, December 17-20, 2019, Proceedings, Part II

s of Invited Talks Granular Artificial Intelligence: A New Avenue of Artificial Intelligence for Modeling Environment and Pattern Recognition

[1]  M. Martínez-Banaclocha,et al.  Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? , 2017, Neuroscience.

[2]  M. Okada,et al.  An analytic solution of the cable equation predicts frequency preference of a passive shunt-end cylindrical cable in response to extracellular oscillating electric fields. , 2010, Biophysical journal.

[3]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory. , 1993, Biophysical journal.

[4]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[5]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[6]  W. Rall Core Conductor Theory and Cable Properties of Neurons , 2011 .

[7]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[8]  Dinggang Shen,et al.  Multiple-Network Classification of Childhood Autism Using Functional Connectivity Dynamics , 2014, MICCAI.

[9]  Gustavo Deco,et al.  Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model , 2019, NeuroImage.

[10]  Ehren L. Newman,et al.  DC-shifts in amplitude in-field generated by an oscillatory interference model of grid cell firing , 2014, Front. Syst. Neurosci..

[11]  Christof Koch,et al.  Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources , 1999, Neural Computation.

[12]  A. K. Singh,et al.  Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia , 2014, TheScientificWorldJournal.

[13]  Kaustubh Supekar,et al.  Temporal Dynamics and Developmental Maturation of Salience, Default and Central-Executive Network Interactions Revealed by Variational Bayes Hidden Markov Modeling , 2016, PLoS Comput. Biol..

[14]  J Rinzel,et al.  Voltage transients in neuronal dendritic trees. , 1975, Federation proceedings.

[15]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[16]  J W Moore,et al.  Propagation of action potentials in inhomogeneous axon regions. , 1975, Federation proceedings.

[17]  Lisa M. Giocomo,et al.  Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons , 2007, Hippocampus.

[18]  Wuyin Jin,et al.  Transmission of blocked electric pulses in a cable neuron model by using an electric field , 2016, Neurocomputing.

[19]  L F Abbott,et al.  A new computational method for cable theory problems. , 1993, Biophysical journal.

[20]  Sarah E. Schipul,et al.  Distinctive neural processes during learning in autism. , 2012, Cerebral cortex.

[21]  W Rall,et al.  Changes of action potential shape and velocity for changing core conductor geometry. , 1974, Biophysical journal.

[22]  Ujjwal Maulik,et al.  Survival Analysis with the Integration of RNA-Seq and Clinical Data to Identify Breast Cancer Subtype Specific Genes , 2019, PReMI.

[23]  W. Rall Time constants and electrotonic length of membrane cylinders and neurons. , 1969, Biophysical journal.

[24]  H. Agmon-Snir,et al.  A novel theoretical approach to the analysis of dendritic transients. , 1995, Biophysical journal.

[25]  Christof Koch,et al.  Ephaptic coupling of cortical neurons , 2011, Nature Neuroscience.

[26]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[27]  Alex Martin,et al.  Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards , 2014, NeuroImage: Clinical.