Computational methods in drug design: Modeling G protein-coupled receptor monomers, dimers, and oligomers

[1]  Marta Filizola,et al.  Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Schertler Structure of rhodopsin and the metarhodopsin I photointermediate. , 2005, Current opinion in structural biology.

[3]  D. Hurst,et al.  Cysteine 2.59(89) in the Second Transmembrane Domain of Human CB2 Receptor Is Accessible within the Ligand Binding Crevice: Evidence for Possible CB2 Deviation from a Rhodopsin Template , 2005, Molecular Pharmacology.

[4]  V. Hornak,et al.  Comparison of class A and D G protein-coupled receptors: common features in structure and activation. , 2005, Biochemistry.

[5]  M. le Maire,et al.  Monomeric G-protein-coupled receptor as a functional unit. , 2005, Biochemistry.

[6]  Marta Filizola,et al.  The study of G‐protein coupled receptor oligomerization with computational modeling and bioinformatics , 2005, The FEBS journal.

[7]  K. Mackie,et al.  Concurrent Stimulation of Cannabinoid CB1 and Dopamine D2 Receptors Enhances Heterodimer Formation: A Mechanism for Receptor Cross-Talk? , 2005, Molecular Pharmacology.

[8]  M. Paterlini The function of the extracellular regions in opioid receptor binding: insights from computational biology. , 2005, Current topics in medicinal chemistry.

[9]  Michel Bouvier,et al.  Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. , 2005, Trends in pharmacological sciences.

[10]  A. Howlett,et al.  Cannabinoid Receptor-Gi Protein Interactions , 2005 .

[11]  S. McAllister,et al.  Structural Mimicry in Class A G Protein-coupled Receptor Rotamer Toggle Switches , 2004, Journal of Biological Chemistry.

[12]  Graeme Milligan,et al.  Domain Swapping in the Human Histamine H1 Receptor , 2004, Journal of Pharmacology and Experimental Therapeutics.

[13]  T. Mielke,et al.  Electron crystallography reveals the structure of metarhodopsin I , 2004, The EMBO journal.

[14]  Marcus Elstner,et al.  The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. , 2004, Journal of molecular biology.

[15]  Christopher A Reynolds,et al.  Toward the active conformations of rhodopsin and the β2‐adrenergic receptor , 2004, Proteins.

[16]  Nagarajan Vaidehi,et al.  First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin. , 2004, Biophysical journal.

[17]  Peter L. Freddolino,et al.  The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Klein-Seetharaman,et al.  Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Peter L. Freddolino,et al.  Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  O. Lichtarge,et al.  Evolutionary Trace of G Protein-coupled Receptors Reveals Clusters of Residues That Determine Global and Class-specific Functions* , 2004, Journal of Biological Chemistry.

[21]  M. Bouvier,et al.  Roles of G‐protein‐coupled receptor dimerization , 2004, EMBO reports.

[22]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[23]  William A. Goddard,et al.  Predicted 3 D structure for the human 2 adrenergic receptor and its binding site for agonists and antagonists , 2004 .

[24]  Orkun S. Soyer,et al.  Dimerization in aminergic G-protein-coupled receptors: application of a hidden-site class model of evolution. , 2003, Biochemistry.

[25]  Steven M. L. Smith,et al.  Self-Association and Raft Localization of Functional Luteinizing Hormone Receptors , 2003, Biology of reproduction.

[26]  Horst Vogel,et al.  Oligomerization of the α1a- and α1b-Adrenergic Receptor Subtypes , 2003, Journal of Biological Chemistry.

[27]  H. Rockman,et al.  Dual Inhibition of &bgr;-Adrenergic and Angiotensin II Receptors by a Single Antagonist: A Functional Role for Receptor–Receptor Interaction In Vivo , 2003, Circulation.

[28]  Joseph Parello,et al.  Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. , 2003, Journal of molecular biology.

[29]  Krzysztof Palczewski,et al.  Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes* , 2003, Journal of Biological Chemistry.

[30]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[31]  B. Mouillac,et al.  Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. , 2003, Molecular endocrinology.

[32]  A. Lau,et al.  Heterodimerization of α2A- and β1-Adrenergic Receptors* , 2003, The Journal of Biological Chemistry.

[33]  Lei Shi,et al.  The Fourth Transmembrane Segment Forms the Interface of the Dopamine D2 Receptor Homodimer* , 2003, The Journal of Biological Chemistry.

[34]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[35]  F Guarnieri,et al.  Activation of the cannabinoid CB1 receptor may involve a W6 48/F3 36 rotamer toggle switch. , 2002, The journal of peptide research : official journal of the American Peptide Society.

[36]  R. Latif,et al.  Ligand-dependent Inhibition of Oligomerization at the Human Thyrotropin Receptor* , 2002, The Journal of Biological Chemistry.

[37]  S. A. Hassan,et al.  Key issues in the computational simulation of GPCR function: representation of loop domains , 2002, J. Comput. Aided Mol. Des..

[38]  Marta Filizola,et al.  Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. , 2002, Protein engineering.

[39]  Kendall J Blumer,et al.  The Extracellular N-terminal Domain and Transmembrane Domains 1 and 2 Mediate Oligomerization of a Yeast G Protein-coupled Receptor* , 2002, The Journal of Biological Chemistry.

[40]  J. Ballesteros,et al.  Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. , 2002, The Journal of biological chemistry.

[41]  S. Mitaku,et al.  Identification of G protein‐coupled receptor genes from the human genome sequence , 2002, FEBS letters.

[42]  J. Wess,et al.  Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. , 2002, Biochemistry.

[43]  Cinque S. Soto,et al.  Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Eckart Bindewald,et al.  A divide and conquer approach to fast loop modeling. , 2002, Protein engineering.

[46]  Jayaram Chandrashekar,et al.  An amino-acid taste receptor , 2002, Nature.

[47]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[48]  Harel Weinstein,et al.  Structure Calculation of Protein Segments Connecting Domains with Defined Secondary Structure: A Simulated Annealing Monte Carlo Combined with Biased Scaled Collective Variables Technique , 2002 .

[49]  Tamar Schlick,et al.  Computational Methods for Macromolecules: Challenges and Applications , 2002 .

[50]  J. Ballesteros,et al.  Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation , 2002 .

[51]  J. Ballesteros,et al.  Structural motifs as functional microdomains in G-protein-coupled receptors: Energetic considerations in the mechanism of activation of the serotonin 5-HT2A receptor by disruption of the ionic lock of the arginine cage* , 2002 .

[52]  Marta Filizola,et al.  Structural models for dimerization of G-protein coupled receptors: the opioid receptor homodimers. , 2002, Biopolymers.

[53]  Georgios G. Gkoutos,et al.  Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. , 2001, Protein engineering.

[54]  B. Mayer,et al.  Protein Tyrosine Nitration in Cytokine-activated Murine Macrophages , 2001, The Journal of Biological Chemistry.

[55]  N. Ryba,et al.  Mammalian Sweet Taste Receptors , 2001, Cell.

[56]  J. Ballesteros,et al.  Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.

[57]  P Ghanouni,et al.  Functionally Different Agonists Induce Distinct Conformations in the G Protein Coupling Domain of the β2Adrenergic Receptor* , 2001, The Journal of Biological Chemistry.

[58]  J. Ballesteros,et al.  Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. , 2001, Molecular pharmacology.

[59]  Mario Mellado,et al.  Chemokine receptor homo‐ or heterodimerization activates distinct signaling pathways , 2001, The EMBO journal.

[60]  P Ghanouni,et al.  Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  L. Prézeau,et al.  Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function , 2001, The EMBO journal.

[62]  S. Schulz,et al.  Homo- and Heterodimerization of Somatostatin Receptor Subtypes , 2001, The Journal of Biological Chemistry.

[63]  H. Hamm How activated receptors couple to G proteins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Milligan,et al.  Oligomerisation of G-protein-coupled receptors. , 2001, Journal of cell science.

[65]  F Guarnieri,et al.  Agonist-induced Conformational Changes at the Cytoplasmic Side of Transmembrane Segment 6 in the β2 Adrenergic Receptor Mapped by Site-selective Fluorescent Labeling* , 2001, The Journal of Biological Chemistry.

[66]  T. Sakmar,et al.  Rhodopsin: structural basis of molecular physiology. , 2001, Physiological reviews.

[67]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[68]  L. Devi,et al.  Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  Lakshmi A. Devi,et al.  Heterodimerization of μ and δ Opioid Receptors: A Role in Opiate Synergy , 2000, The Journal of Neuroscience.

[70]  Leonardo Pardo,et al.  Serine and Threonine Residues Bend α-Helices in the χ1 = g− Conformation , 2000 .

[71]  Christopher A Reynolds,et al.  Dimerization and Domain Swapping in G-Protein-Coupled Receptors: A Computational Study , 2000, Neuropsychopharmacology.

[72]  K. Fuxe,et al.  Evidence for Adenosine/Dopamine Receptor Interactions: Indications for Heteromerization , 2000, Neuropsychopharmacology.

[73]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[74]  E I Canela,et al.  Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[75]  H. Akil,et al.  Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. , 2000, Molecular pharmacology.

[76]  Y. Jan,et al.  A Trafficking Checkpoint Controls GABAB Receptor Heterodimerization , 2000, Neuron.

[77]  K. Nakanishi,et al.  Movement of retinal along the visual transduction path. , 2000, Science.

[78]  S. Hassan,et al.  A General Treatment of Solvent Effects Based on Screened Coulomb Potentials , 2000 .

[79]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[80]  U. Kumar,et al.  Subtypes of the Somatostatin Receptor Assemble as Functional Homo- and Heterodimers* , 2000, The Journal of Biological Chemistry.

[81]  T. Gudermann,et al.  Structural Implication for Receptor Oligomerization from Functional Reconstitution Studies of Mutant V2 Vasopressin Receptors* , 2000, The Journal of Biological Chemistry.

[82]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[83]  F. Marshall,et al.  GABAB receptors - the first 7TM heterodimers. , 1999, Trends in pharmacological sciences.

[84]  G. Demontis,et al.  G protein-linked receptors: pharmacological evidence for the formation of heterodimers. , 1999, The Journal of pharmacology and experimental therapeutics.

[85]  T. Lybrand,et al.  A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely. , 1999, Journal of medicinal chemistry.

[86]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[87]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[88]  R A Goldstein,et al.  Using physical-chemistry-based substitution models in phylogenetic analyses of HIV-1 subtypes. , 1999, Molecular biology and evolution.

[89]  R A Goldstein,et al.  Models of natural mutations including site heterogeneity , 1998, Proteins.

[90]  B. Kobilka,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[91]  H. Bourne,et al.  G-protein diseases furnish a model for the turn-on switch , 1998, Nature.

[92]  R B Corley,et al.  Assembly, sorting, and exit of oligomeric proteins from the endoplasmic reticulum , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[93]  T. Schwartz,et al.  Split-receptors in the tachykinin neurokinin-1 system--mutational analysis of intracellular loop 3. , 1998, European journal of biochemistry.

[94]  F E Cohen,et al.  Identification of functional surfaces of the zinc binding domains of intracellular receptors. , 1997, Journal of molecular biology.

[95]  H Weinstein,et al.  Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor , 1997, The EMBO journal.

[96]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[97]  A. Valencia,et al.  Improving contact predictions by the combination of correlated mutations and other sources of sequence information. , 1997, Folding & design.

[98]  J. Wess G‐protein‐coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G‐protein recognition , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[99]  T. Gudermann,et al.  Functional and structural complexity of signal transduction via G-protein-coupled receptors. , 1997, Annual review of neuroscience.

[100]  G. Corsini,et al.  Functional Role of the Third Cytoplasmic Loop in Muscarinic Receptor Dimerization* , 1996, The Journal of Biological Chemistry.

[101]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[102]  S. W. Lin,et al.  Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. , 1996, Biochemistry.

[103]  K D Ridge,et al.  Examining Rhodopsin Folding and Assembly through Expression of Polypeptide Fragments (*) , 1996, The Journal of Biological Chemistry.

[104]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[105]  J. Wess,et al.  Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a co‐expressed receptor polypeptide. , 1996, The EMBO journal.

[106]  H. Weinstein,et al.  Conformational Memories and the Exploration of Biologically Relevant Peptide Conformations: An Illustration for the Gonadotropin-Releasing Hormone , 1996 .

[107]  F. Cohen,et al.  Evolutionarily conserved Gabg binding surfaces support a model of the G protein-receptor complex (evolutionyprotein-protein interactionyfunctional motifysignal transduction) , 1996 .

[108]  Jie Liu,et al.  Plasma Membrane Localization and Functional Rescue of Truncated Forms of a G Protein-coupled Receptor (*) , 1995, The Journal of Biological Chemistry.

[109]  R A Goldstein,et al.  Context-dependent optimal substitution matrices. , 1995, Protein engineering.

[110]  J. Ballesteros,et al.  Construction of a 3D model of the cannabinoid CB1 receptor: determination of helix ends and helix orientation. , 1995, Life sciences.

[111]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[112]  K. Fahmy,et al.  A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. , 1994, The Journal of biological chemistry.

[113]  Kolakowski Lf GCRDB: A G-PROTEIN-COUPLED RECEPTOR DATABASE , 1994 .

[114]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[115]  Geoffrey J. Barton,et al.  Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation , 1993, Comput. Appl. Biosci..

[116]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[117]  J. Wess,et al.  Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[119]  John P. Overington,et al.  Modeling α‐helical transmembrane domains: The calculation and use of substitution tables for lipid‐facing residues , 1993, Protein science : a publication of the Protein Society.

[120]  J. Ballesteros,et al.  Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains. , 1992, Biophysical journal.

[121]  D. Kliger,et al.  Photointermediates of visual pigments , 1992, Journal of bioenergetics and biomembranes.

[122]  P. Conn Methods in neurosciences , 1991 .

[123]  T. Blundell,et al.  An analysis of the periodicity of conserved residues in sequence alignments of G‐protein coupled receptors , 1989, FEBS letters.

[124]  G. Feher,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[125]  M. Caron,et al.  Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. , 1988, Science.

[126]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[127]  A. Lesk,et al.  The relation between the divergence of sequence and structure in proteins. , 1986, The EMBO journal.

[128]  D. Eisenberg,et al.  The hydrophobic moment detects periodicity in protein hydrophobicity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.