Improving frame-bound-ratio for frames generated by oversampled filter banks

This paper presents a simple method to improve the frame-bounds-ratio of perfect reconstruction (PR) oversampled filter banks (FBs) by adjusting the gain of each subband filter. For a given analysis PRFB, a finite convex optimization algorithm is presented to redesign the subband gains such that the frame-bounds-ratio of the FB is minimized. The algorithm also provides an effective way to compute the frame bounds. Examples show the effectiveness of the presented method.

[1]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[2]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[3]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[4]  M. Hampejs,et al.  Double Preconditioning for Gabor Frames , 2006, IEEE Transactions on Signal Processing.

[5]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[6]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[7]  Albert Cohen,et al.  Biorthogonal filterbanks and energy preservation property in image compression , 1999, IEEE Trans. Image Process..

[8]  F. Hlawatsch,et al.  Oversampled cosine modulated filter banks with perfect reconstruction , 1998 .

[9]  M. Ghribi,et al.  Robust optimal control of a DC motor , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[10]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[11]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[12]  Alfred Mertins Frame analysis for biorthogonal cosine-modulated filterbanks , 2003, IEEE Trans. Signal Process..

[13]  Helmut Bölcskei,et al.  Noise reduction in oversampled filter banks using predictive quantization , 2001, IEEE Trans. Inf. Theory.

[14]  Karlheinz Gröchenig,et al.  Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..

[15]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[16]  Edoardo Mosca,et al.  Frame-Theory-Based Analysis and Design of Oversampled Filter Banks: Direct Computational Method , 2007, IEEE Transactions on Signal Processing.

[17]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[18]  Yonina C. Eldar,et al.  Dual Gabor frames: theory and computational aspects , 2005, IEEE Transactions on Signal Processing.

[19]  Martin Vetterli,et al.  Tight Weyl-Heisenberg Frames in , 1998 .

[20]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[21]  Kai-Kuang Ma,et al.  Time-domain oversampled lapped transforms: theory, structure, and application in image coding , 2004, IEEE Transactions on Signal Processing.

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[24]  T. Strohmer Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .