Gravitational waves from scattering of stellar-mass black holes in galactic nuclei

Stellar-mass black holes (BHs) are expected to segregate and form a steep density cusp around supermassive black holes (SMBHs) in galactic nuclei. We follow the evolution of a multimass system of BHs and stars by numerically integrating the Fokker–Planck energy diffusion equations for a variety of BH mass distributions. We find that the BHs ‘self-segregate’, and that the rarest, most massive BHs dominate the scattering rate closest to the SMBH (10 −1 pc). BH–BH binaries form out of gravitational wave emission during BH encounters. We find that the expected rate of BH coalescence events detectable by Advanced LIGO is ∼1–10 2 yr −1 , depending on the initial mass function of stars in galactic nuclei and the mass of the most massive BHs. We find that the actual merger rate is likely ∼10 times larger than this due to the intrinsic scatter of stellar densities in many different galaxies. The BH binaries that form this way in galactic nuclei have significant eccentricities as they enter the LIGO band (90 per cent with e> 0.9), and are therefore distinguishable from other binaries, which circularize before becoming detectable. We also show that eccentric mergers can be detected to larger distances and greater BH masses than circular mergers, up to ∼700 M � . Future ground-based gravitational wave observatories will be able to constrain both the mass function of BHs and stars in galactic nuclei.

[1]  L. Ho,et al.  Black Holes in Pseudobulges and Spheroidals: A Change in the Black Hole-Bulge Scaling Relations at Low Mass , 2008, 0810.1972.

[2]  M. Vasúth,et al.  Gravitational waveforms for spinning compact binaries , 2008, 0806.2273.

[3]  Lawrence E. Kidder,et al.  High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants , 2008, 0804.4184.

[4]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[5]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[6]  D. Shoemaker,et al.  Binary-black-hole encounters, gravitational bursts, and maximum final spin. , 2008, Physical review letters.

[7]  J. Levin,et al.  A periodic table for black hole orbits , 2008, 0802.0459.

[8]  Gravitational waves from compact binaries inspiralling along post-Newtonian accurate eccentric orbits: Data analysis implications , 2007, 0712.3199.

[9]  M. Ansorg,et al.  Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity , 2007, 0710.3823.

[10]  T. Bulik,et al.  The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.

[11]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[12]  K. Holley-Bockelmann,et al.  Relativistic Effects in Extreme Mass Ratio Gravitational Wave Bursts , 2007, 0704.2612.

[13]  A. Loeb,et al.  Production of hypervelocity stars through encounters with stellar‐mass black holes in the Galactic Centre , 2006, astro-ph/0609046.

[14]  Xin Wu,et al.  Revisit on ``Ruling out chaos in compact binary systems'' , 2007, 1004.5057.

[15]  Duncan A. Brown,et al.  Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals. , 2007, Physical review letters.

[16]  Jorge Cuadra,et al.  Self-Gravitating Fragmentation of Eccentric Accretion Disks , 2007 .

[17]  B. Iyer,et al.  Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux , 2007, 0711.0302.

[18]  Frank Herrmann,et al.  Circularization and final spin in eccentric binary-black-hole inspirals , 2007, 0710.5167.

[19]  Charles D. Bailyn,et al.  A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33 , 2007, Nature.

[20]  A. Zezas,et al.  The Orbital Period of the Wolf-Rayet Binary IC 10 X-1: Dynamic Evidence that the Compact Object Is a Black Hole , 2007, 0709.2892.

[21]  R. Abuter,et al.  Evidence for a Long-standing Top-heavy Initial Mass Function in the Central Parsec of the Galaxy , 2007, 0707.2382.

[22]  Jaime S. Cardoso,et al.  Matched-filtering and parameter estimation of ringdown waveforms , 2007, 0707.1202.

[23]  M. Vas'uth,et al.  Gravitational waveforms for finite mass binaries , 2007, 0705.3481.

[24]  D. Merritt,et al.  Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei , 2007, 0705.2745.

[25]  P. Madau,et al.  Hypervelocity stars and the environment of Sgr A , 2007, 0704.2872.

[26]  Duncan A. Brown,et al.  Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.

[27]  Astrophysics,et al.  Mergers of Black Hole-Neutron Star Binaries. I. Methods and First Results , 2007, astro-ph/0703599.

[28]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[29]  F. Pretorius,et al.  Black hole mergers and unstable circular orbits , 2007, gr-qc/0702084.

[30]  R. O’Shaughnessy,et al.  Dynamical interactions and the black-hole merger rate of the Universe , 2007, astro-ph/0701887.

[31]  J. Gair,et al.  'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole , 2007 .

[32]  S. McWilliams,et al.  Binary black hole late inspiral: Simulations for gravitational wave observations , 2006, gr-qc/0612117.

[33]  S. Larson,et al.  Gravitational Wave Bursts from the Galactic Massive Black Hole , 2006, astro-ph/0612337.

[34]  T. Bulik,et al.  On the Rarity of Double Black Hole Binaries: Consequences for Gravitational Wave Detection , 2006, astro-ph/0612032.

[35]  J. Levin Chaos and order in models of black hole pairs , 2006, gr-qc/0612003.

[36]  J. Gair,et al.  Erratum: Semirelativistic approximation to gravitational radiation from encounters with nonspinning black holes (Physical Review D - Particles, Fields Gravitation and Cosmology (2005) 72, (084009)) , 2006 .

[37]  Patrick Deegan,et al.  Constraining the number of compact remnants near Sgr A , 2006, astro-ph/0611524.

[38]  S. Nayakshin,et al.  X-rays from cusps of compact remnants near galactic centres , 2006, astro-ph/0611345.

[39]  K. Holley-Bockelmann,et al.  Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band , 2006 .

[40]  A. Eckart,et al.  The structure of the nuclear stellar cluster of the Milky Way , 2006, Proceedings of the International Astronomical Union.

[41]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[42]  B. Iyer,et al.  Probing the nonlinear structure of general relativity with black hole binaries , 2006, gr-qc/0604067.

[43]  S. Márka,et al.  Detection Rate Estimates of Gravity Waves Emitted during Parabolic Encounters of Stellar Black Holes in Globular Clusters , 2006, astro-ph/0603441.

[44]  T. Alexander,et al.  The Effect of Mass Segregation on Gravitational Wave Sources near Massive Black Holes , 2006, astro-ph/0603324.

[45]  Pau Amaro-Seoane,et al.  Stellar Remnants in Galactic Nuclei: Mass Segregation , 2006 .

[46]  F. Bauer,et al.  A Chandra Catalog of X-Ray Sources in the Central 150 pc of the Galaxy , 2006, astro-ph/0601627.

[47]  Michael J. Kurtz,et al.  Submitted to ApJ Letters , 2006 .

[48]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[49]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[50]  T. Ebisuzaki,et al.  The Ecology of Star Clusters and Intermediate-Mass Black Holes in the Galactic Bulge , 2005, astro-ph/0511397.

[51]  S. Shapiro,et al.  Dynamical evolution of black hole-neutron star binaries in general relativity: Simulations of tidal disruption , 2005, astro-ph/0511366.

[52]  M. Miller,et al.  Three-Body Dynamics with Gravitational Wave Emission , 2005, astro-ph/0509885.

[53]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[54]  L. Ho,et al.  TO APPEAR IN The Astrophysical Journal (Letters). Preprint typeset using L ATEX style emulateapj v. 26/01/00 THE MBH −σ ∗ RELATION IN LOCAL ACTIVE GALAXIES , 2005 .

[55]  S. Nayakshin,et al.  Weighing the young stellar discs around Sgr A , 2005, astro-ph/0511830.

[56]  J. Gair,et al.  Semirelativistic approximation to gravitational radiation from encounters with nonspinning black holes , 2005 .

[57]  J. Gair,et al.  Semi-relativistic approximation to gravitational radiation from encounters with black holes , 2005 .

[58]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[59]  C.Dumas,et al.  SINFONI in the Galactic Center: young stars and IR flares in the central light month , 2005, astro-ph/0502129.

[60]  Michael J. Kurtz,et al.  Submitted to ApJ Letters , 1996 .

[61]  L. Ho,et al.  Dwarf Seyfert 1 Nuclei and the Low-Mass End of the MBH-σ Relation , 2004, astro-ph/0412575.

[62]  MIT,et al.  An Overabundance of Transient X-Ray Binaries within 1 Parsec of the Galactic Center , 2004, astro-ph/0412492.

[63]  UCLA,et al.  Stellar Dynamics at the Galactic Center with an Extremely Large Telescope , 2004, astro-ph/0404407.

[64]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[65]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[66]  F. Timmes,et al.  Understanding Compact Object Formation and Natal Kicks. I. Calculation Methods and the Case of GRO J1655–40 , 2004, astro-ph/0411423.

[67]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[68]  T. Damour,et al.  Phasing of gravitational waves from inspiralling eccentric binaries , 2004, gr-qc/0404128.

[69]  J. Tonry,et al.  The ACS Virgo Cluster Survey. I. Introduction to the Survey , 2004, astro-ph/0404138.

[70]  A. Sa̧dowski,et al.  A Comprehensive Study of Young Black Hole Populations , 2004, astro-ph/0404068.

[71]  D. Merritt,et al.  Core Formation by a Population of Massive Remnants , 2004, astro-ph/0403331.

[72]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[73]  S. Hughes,et al.  Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.

[74]  K. Martel Gravitational waveforms from a point particle orbiting a Schwarzschild black hole , 2003, gr-qc/0311017.

[75]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[76]  B. C. Joshi,et al.  The Cosmic Coalescence Rates for Double Neutron Star Binaries , 2003, astro-ph/0312101.

[77]  P. Kroupa,et al.  Galactic-Field Initial Mass Functions of Massive Stars , 2003 .

[78]  D. Rouan,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[79]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[80]  D. Richstone,et al.  The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions , 2002, astro-ph/0210573.

[81]  J. Faber,et al.  Measuring neutron-star radii with gravitational-wave detectors. , 2002, Physical review letters.

[82]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[83]  A. Gould,et al.  Millisecond Pulsars as Probes of Mass Segregation in the Galactic Center , 2001, astro-ph/0112445.

[84]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[85]  A. Gould,et al.  Microlensing by Stellar Black Holes around Sagittarius A* , 2001, astro-ph/0102481.

[86]  T. Alexander,et al.  Enhanced Microlensing by Stars around the Black Hole in the Galactic Center , 2000, astro-ph/0009404.

[87]  T. Alexander,et al.  Tidal Spin-up of Stars in Dense Stellar Cusps around Massive Black Holes , 2000, astro-ph/0004240.

[88]  Andrew Gould,et al.  A Cluster of Black Holes at the Galactic Center , 2000, astro-ph/0003269.

[89]  F. Rasio,et al.  Thermal and Dynamical Equilibrium in Two-Component Star Clusters , 1999, astro-ph/9912457.

[90]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[91]  E. Poisson,et al.  Gravitational waves from eccentric compact binaries: Reduction in signal-to-noise ratio due to nonoptimal signal processing , 1999, gr-qc/9907006.

[92]  A. Sternberg,et al.  Near-Infrared Microlensing of Stars by the Supermassive Black Hole in the Galactic Center , 1998, astro-ph/9811038.

[93]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[94]  N. E. White,et al.  The Galactic Distribution of Black Hole Candidates in Low-Mass X-Ray Binary Systems , 1996 .

[95]  Takahiro Tanaka,et al.  Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild black hole -5.5 Post-Newtonian Formula- , 1996, gr-qc/9701050.

[96]  Kevin P. Rauch,et al.  Resonant tidal disruption in galactic nuclei , 1996 .

[97]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[98]  M. Lee N-body evolution of dense clusters of compact stars , 1993 .

[99]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[100]  Piet Hut,et al.  Stellar black holes in globular clusters , 1993, Nature.

[101]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[102]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[103]  S. Shapiro,et al.  The dynamical evolution of dense star clusters in galactic nuclei , 1990 .

[104]  Stuart Louis Shapiro,et al.  Dynamical evolution of dense clusters of compact stars , 1989 .

[105]  Stuart Louis Shapiro,et al.  The Collapse of Dense Star Clusters to Supermassive Black Holes: Binaries and Gravitational Radiation , 1987 .

[106]  R. Wolf,et al.  Star distribution around a massive black hole in a globular cluster. II. Unequal star masses , 1977 .

[107]  M. Turner Gravitational radiation from point-masses in unbound orbits: Newtonian results. , 1977 .

[108]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[109]  S. Shapiro,et al.  The distribution of stars around a massive black hole , 1976, Nature.

[110]  L. Spitzer,et al.  Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems , 1969 .

[111]  Physical Review , 1965, Nature.

[112]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[113]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[114]  October I Physical Review Letters , 2022 .