Identification of synchronous machine parameters using a multiple input multiple output approach

This paper presents an alternative method for the identification of the d-axis parameters of a synchronous machine. The first part of the paper describes a multiple input multiple output (MIMO) broadband excitation and measurement method which is more time efficient than the standard standstill frequency response (SSFR) method. The second part describes a MIMO frequency domain identification procedure which estimates the d-axis parameters in 3 steps. The proposed identification procedure is self starting. It does not require starting values or other prior information. The measurement method and the identification procedure are tested on a 20 kVA salient pole synchronous machine.

[1]  Johan Schoukens,et al.  Survey of excitation signals for FFT based signal analyzers , 1988 .

[2]  Philippe Viarouge,et al.  Identification of generalised models of synchronous machines from time-domain tests , 1991 .

[3]  Rik Pintelon,et al.  Parametric identification of two-port models in the frequency domain , 1991 .

[4]  I. Kamwa,et al.  A frequency-domain maximum likelihood estimation of synchronous machine high-order models using SSFR test data , 1992 .

[5]  Ali Keyhani,et al.  Identification of high-order synchronous generator models from SSFR test data , 1994 .

[6]  Philippe Viarouge,et al.  Three-transfer-function approach for building phenomenological models of synchronous machines , 1994 .

[7]  Rik Pintelon,et al.  Identification of synchronous machines parameters using broadband excitations , 1994 .

[8]  J. Schoukens,et al.  Identification of linear systems in the presence of nonlinear distortions. A frequency domain approach. I. Non-parametric identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[9]  Rik Pintelon,et al.  A Gauss-Newton-like optimization algorithm for "weighted" nonlinear least-squares problems , 1996, IEEE Trans. Signal Process..

[10]  Gerd Vandersteen,et al.  Model selection through a statistical analysis of the global minimum of a weighted nonlinear least squares cost function , 1997, IEEE Trans. Signal Process..

[11]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[12]  J. Schoukens,et al.  Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach , 1998, IEEE Trans. Autom. Control..

[13]  Rik Pintelon,et al.  Determination of synchronous machine parameters using network synthesis techniques , 1999 .