Border crossing delay prediction using transient multi-server queueing models

[1]  Zhe George Zhang,et al.  Modeling Security-Check Queues , 2011, Manag. Sci..

[2]  Frederico R. B. Cruz,et al.  Performance Evaluation and Dimensioning of /// Systems through Kernel Estimation , 2011 .

[3]  Région de la Capitale Nationale,et al.  Ontario Chamber of Commerce , 2011 .

[4]  R. Wigle,et al.  Border Delays Re-Emerging Priority: Within-Country Dimensions for Canada , 2011 .

[5]  Jeffrey P. Kharoufeh,et al.  Batch Markovian Arrival Processes (BMAP) , 2011 .

[6]  Jau-Chuan Ke,et al.  Comparison on five estimation approaches of intensity for a queueing system with short run , 2009, Comput. Stat..

[7]  Adel W. Sadek,et al.  A novel forecasting approach inspired by human memory: The example of short-term traffic volume forecasting , 2009 .

[8]  Jean-Michel Fourneau,et al.  Diffusion Approximation Model of Multiserver Stations with Losses , 2009, PASM@EPEW.

[9]  Evgenia Smirni,et al.  KPC-Toolbox: Simple Yet Effective Trace Fitting Using Markovian Arrival Processes , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[10]  Mahmut Parlar,et al.  Dynamic Allocation of Airline Check-In Counters: A Queueing Optimization Approach , 2008, Manag. Sci..

[11]  Michael P. Wiper,et al.  Bayesian control of the number of servers in a GI /M/c queueing system , 2007 .

[12]  Yutaka Takahashi,et al.  Algorithmic Computation of the Transient Queue Length Distribution in the BMAP/D/c Queue , 2007 .

[13]  Jau-Chuan Ke,et al.  Nonparametric and simulated analysis of intensity for a queueing system , 2006, Appl. Math. Comput..

[14]  Ke Zhang,et al.  Two distinct ways of using kalman filters to predict urban arterial travel time , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[15]  A. Horváth,et al.  Matching Three Moments with Minimal Acyclic Phase Type Distributions , 2005 .

[16]  Pitu B. Mirchandani,et al.  Short-Term Arterial Travel Time Prediction for Advanced Traveler Information Systems , 2004, J. Intell. Transp. Syst..

[17]  Billy M. Williams,et al.  Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results , 2003, Journal of Transportation Engineering.

[18]  Amedeo R. Odoni,et al.  Approximate solution for multi-server queueing systems with Erlangian service times , 2002, Comput. Oper. Res..

[19]  Billy M. Williams,et al.  Comparison of parametric and nonparametric models for traffic flow forecasting , 2002 .

[20]  Lothar Breuer,et al.  An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure , 2002, Ann. Oper. Res..

[21]  Michael J Demetsky,et al.  TRAFFIC FLOW FORECASTING: COMPARISON OF MODELING APPROACHES , 1997 .

[22]  M. Neuts A versatile Markovian point process , 1979, Journal of Applied Probability.

[23]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[24]  Laoucine Kerbache,et al.  Performance Evaluation and Dimensioning of GIX/M/c/N Systems Through Kernel Estimation , 2011 .

[25]  Seongmoon Kim,et al.  The Toll Plaza Optimization Problem: Design, Operations, and Strategies , 2009 .

[26]  María Concepción Ausín,et al.  Bayesian prediction of the transient behaviour and busy period in short- and long-tailed GI/G/1 queueing systems , 2008, Comput. Stat. Data Anal..

[27]  J. C. Taylor,et al.  The U.S.-Canada Border: Cost Impacts, Causes, and Short to Long Term Management Options , 2003 .

[28]  Thomas Urbanik,et al.  Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network , 1998 .

[29]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[30]  J. Medhi,et al.  Stochastic models in queueing theory , 1991 .