Efficient Multiplication Beyond Optimal Normal Bases

In cryptographic applications, the use of normal bases to represent elements of the finite field GF(2/sup m/) is quite advantageous, especially for hardware implementation. In this article, we consider an important field operation, namely, multiplication which is used in many cryptographic functions. We present a class of algorithms for normal basis multiplication in GF(2/sup m/). Our proposed multiplication algorithm for composite finite fields requires a significantly lower number of bit level operations and, hence, can reduce the space complexity of cryptographic systems.

[1]  Trieu-Kien Truong,et al.  VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.

[2]  R. J. Beynon,et al.  Computers , 1985, Comput. Appl. Biosci..

[3]  Ronald C. Mullin,et al.  Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..

[4]  Ian F. Blake,et al.  Low complexity normal bases , 1989, Discret. Appl. Math..

[5]  Gérald E. Séguin,et al.  Low complexity normal bases for F2mn , 1990, Discret. Appl. Math..

[6]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[7]  Shuhong Gao,et al.  Optimal normal bases , 1992, Des. Codes Cryptogr..

[8]  V.K. Bhargava,et al.  A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields , 1993, IEEE Trans. Computers.

[9]  Chung-Chin Lu,et al.  A Search of Minimal Key Functions for Normal Basis Multipliers , 1997, IEEE Trans. Computers.

[10]  Berk Sunar,et al.  Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields , 1998, IEEE Trans. Computers.

[11]  Christof Paar,et al.  Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents , 1999, IEEE Trans. Computers.

[12]  Steven D. Galbraith,et al.  A Cryptographic Application of Weil Descent , 1999, IMACC.

[13]  Jongin Lim,et al.  Efficient Normal Basis Multipliers in Composite Fields , 2000, IEEE Trans. Computers.

[14]  M. Anwar Hasan,et al.  On Efficient Normal Basis Multiplication , 2000, INDOCRYPT.

[15]  Nigel P. Smart,et al.  How Secure Are Elliptic Curves over Composite Extension Fields? , 2001, EUROCRYPT.

[16]  Jean-Jacques Quisquater,et al.  A Secure Family of Composite Finite Fields Suitable for Fast Implementation of Elliptic Curve Cryptography , 2001, INDOCRYPT.

[17]  Berk Sunar,et al.  An Efficient Optimal Normal Basis Type II Multiplier , 2001, IEEE Trans. Computers.

[18]  Manuel Leone,et al.  A New Low Complexity Parallel Multiplier for a Class of Finite Fields , 2001, CHES.

[19]  Alfred Menezes,et al.  Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree , 2001, INDOCRYPT.

[20]  M. Anwar Hasan,et al.  Fast Normal Basis Multiplication Using General Purpose Processors , 2001, Selected Areas in Cryptography.

[21]  S. Vanstone,et al.  OPTIMAL NORMAL BASES IN GF(p”)* , 2002 .

[22]  M. Anwar Hasan,et al.  A New Construction of Massey-Omura Parallel Multiplier over GF(2m) , 2002, IEEE Trans. Computers.

[23]  Michele Elia,et al.  On the Inherent Space Complexity of Fast Parallel Multipliers for GF(2/supm/) , 2002, IEEE Trans. Computers.

[24]  Gordon B. Agnew,et al.  An implementation for a fast public-key cryptosystem , 2004, Journal of Cryptology.