A first order, exact penalty function algorithm for equality constrained optimization problems
暂无分享,去创建一个
[1] D. Luenberger. Control problems with kinks , 1970 .
[2] R. Fletcher,et al. A Class of Methods for Nonlinear Programming II Computational Experience , 1970 .
[3] Shih-Ping Han. A globally convergent method for nonlinear programming , 1975 .
[4] David Q. Mayne,et al. Feasible directions algorithms for optimization problems with equality and inequality constraints , 1976, Math. Program..
[5] T. Pietrzykowski. An Exact Potential Method for Constrained Maxima , 1969 .
[6] Dimitri P. Bertsekas,et al. Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..
[7] Anthony V. Fiacco,et al. Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .
[8] M. J. D. Powell,et al. A fast algorithm for nonlinearly constrained optimization calculations , 1978 .
[9] H. H. Rosenbrock,et al. An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..
[10] W. Zangwill. Non-Linear Programming Via Penalty Functions , 1967 .
[11] T. Pietrzykowski,et al. A Penalty Function Method Converging Directly to a Constrained Optimum , 1977 .
[12] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[13] A. Conn. Constrained Optimization Using a Nondifferentiable Penalty Function , 1973 .
[14] Elijah Polak,et al. On the global stabilization of locally convergent algorithms , 1976, Autom..
[15] S. Howe. New Conditions for Exactness of a Simple Penalty Function , 1973 .
[16] J. Asaadi,et al. A computational comparison of some non-linear programs , 1973, Math. Program..