A first order, exact penalty function algorithm for equality constrained optimization problems

A first order algorithm for solving the problem of minimizing a function subject to equality constraints is presented. At each iteration the algorithm generates a search direction which has two components, the first component being chosen to satisfy (to first order) the equality constraint and the second to be a descent direction for the objective function. The step length is determined using an exact penalty function. A procedure for choosing a suitable value for the parameter in the exact penalty function completes the algorithm description. Global convergence is established, and a comparison with alternative algorithms is made.

[1]  D. Luenberger Control problems with kinks , 1970 .

[2]  R. Fletcher,et al.  A Class of Methods for Nonlinear Programming II Computational Experience , 1970 .

[3]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[4]  David Q. Mayne,et al.  Feasible directions algorithms for optimization problems with equality and inequality constraints , 1976, Math. Program..

[5]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[6]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..

[7]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[8]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[9]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[10]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .

[11]  T. Pietrzykowski,et al.  A Penalty Function Method Converging Directly to a Constrained Optimum , 1977 .

[12]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[13]  A. Conn Constrained Optimization Using a Nondifferentiable Penalty Function , 1973 .

[14]  Elijah Polak,et al.  On the global stabilization of locally convergent algorithms , 1976, Autom..

[15]  S. Howe New Conditions for Exactness of a Simple Penalty Function , 1973 .

[16]  J. Asaadi,et al.  A computational comparison of some non-linear programs , 1973, Math. Program..