Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.

[1]  Y. Mou,et al.  Determination of chemical shift anisotropies of unresolved carbonyl sites by C-alpha detection under magic-angle spinning. , 2007, Journal of magnetic resonance.

[2]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[3]  Y. Mou,et al.  Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction. , 2007, Solid state nuclear magnetic resonance.

[4]  R. Griffin,et al.  Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. , 2007, Journal of the American Chemical Society.

[5]  Malcolm H. Levitt,et al.  Symmetry‐Based Pulse Sequences in Magic‐Angle Spinning Solid‐State NMR , 2007 .

[6]  R. Chen,et al.  Quantifying the sequence-dependent species barrier between hamster and mouse prions. , 2007, Journal of the American Chemical Society.

[7]  Gerd Krause,et al.  General structural motifs of amyloid protofilaments , 2006, Proceedings of the National Academy of Sciences.

[8]  R. Riek,et al.  Observation of highly flexible residues in amyloid fibrils of the HET-s prion. , 2006, Journal of the American Chemical Society.

[9]  R. Tycko,et al.  Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide. , 2006, Biophysical journal.

[10]  Y. Mou,et al.  Efficient spin-spin scalar coupling mediated C-13 homonuclear polarization transfer in biological solids without proton decoupling. , 2006, Solid state nuclear magnetic resonance.

[11]  S. Prusiner,et al.  Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L). , 2006, Solid state nuclear magnetic resonance.

[12]  Mikhail Veshtort,et al.  SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. , 2006, Journal of magnetic resonance.

[13]  S. Decatur Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. , 2006, Accounts of chemical research.

[14]  R. Tycko,et al.  Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. , 2006, Biochemistry.

[15]  T. Shirasawa,et al.  Verification of the turn at positions 22 and 23 of the beta-amyloid fibrils with Italian mutation using solid-state NMR. , 2005, Bioorganic & medicinal chemistry.

[16]  S. Becker,et al.  Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Sarah A. Petty,et al.  Intersheet rearrangement of polypeptides during nucleation of β-sheet aggregates , 2005 .

[18]  Y. Ishii,et al.  Capturing intermediate structures of Alzheimer's β-amyloid, Aβ(1-40), by solid-state NMR spectroscopy , 2005 .

[19]  R. Tycko,et al.  Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. , 2005, Biochemistry.

[20]  Thorsten Lührs,et al.  Correlation of structural elements and infectivity of the HET-s prion , 2005, Nature.

[21]  R. Riek,et al.  High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. , 2005, Angewandte Chemie.

[22]  T. Adalsteinsson,et al.  Correlations among morphology, beta-sheet stability, and molecular structure in prion peptide aggregates. , 2005, Biochemistry.

[23]  M. Mattson,et al.  Self-Propagating, Molecular-Level Polymorphism in Alzheimer's ß-Amyloid Fibrils , 2005, Science.

[24]  C. Dobson,et al.  High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Gerd Buntkowsky,et al.  Solid State NMR Reveals a pH-dependent Antiparallel β-Sheet Registry in Fibrils Formed by a β-Amyloid Peptide , 2004 .

[26]  C. Dobson Protein folding and misfolding , 2003, Nature.

[27]  H. Roder,et al.  NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. A. Silva,et al.  The organization and assembly of a beta-sheet formed by a prion peptide in solution: an isotope-edited FTIR study. , 2003, Journal of the American Chemical Society.

[29]  R. Tycko,et al.  Solid-state NMR spectroscopy method for determination of the backbone torsion angle psi in peptides with isolated uniformly labeled residues. , 2003, Journal of the American Chemical Society.

[30]  Malcolm H. Levitt,et al.  Symmetry-Based Pulse Sequences in Magic-Angle Spinning Solid-State NMR , 2003 .

[31]  J. J. Balbach,et al.  Site-Specific Identification of Non-β-Strand Conformations in Alzheimer's β-Amyloid Fibrils by Solid-State NMR , 2003 .

[32]  A. Naito,et al.  Effect of Electrostatic Interaction on Fibril Formation of Human Calcitonin as Studied by High Resolution Solid State 13C NMR* , 2003, The Journal of Biological Chemistry.

[33]  Robert G Griffin,et al.  Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Leapman,et al.  Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. , 2002, Biochemistry.

[35]  R. Nussinov,et al.  Molecular dynamics simulations of alanine rich β‐sheet oligomers: Insight into amyloid formation , 2002, Protein science : a publication of the Protein Society.

[36]  C. Rienstra,et al.  Determination of multiple torsion-angle constraints in U-(13)C,(15)N-labeled peptides: 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift NMR spectroscopy in rotating solids. , 2002, Journal of the American Chemical Society.

[37]  J. J. Balbach,et al.  Supramolecular Structure in Full-Length Alzheimer's β-Amyloid Fibrils: Evidence for a Parallel β-Sheet Organization from Solid-State Nuclear Magnetic Resonance , 2002 .

[38]  B. Meier,et al.  Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme , 2002 .

[39]  R. Griffin,et al.  NMR Determination of the Torsion Angle Ψ in α-Helical Peptides and Proteins: The HCCN Dipolar Correlation Experiment , 2002 .

[40]  G. Brunklaus,et al.  R sequences for the scalar-coupling mediated homonuclear correlation spectroscopy under fast magic-angle spinning , 2001 .

[41]  F. Cohen,et al.  Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Y. Ishii,et al.  Measurement of dipole-coupled lineshapes in a many-spin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning , 2001 .

[43]  Y. Ishii 13C-13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination , 2001 .

[44]  R. Tycko,et al.  Determination of Polypeptide Backbone Dihedral Angles in Solid State NMR by Double Quantum 13C Chemical Shift Anisotropy Measurements , 2001 .

[45]  M. Bak,et al.  SIMPSON: a general simulation program for solid-state NMR spectroscopy. , 2000, Journal of magnetic resonance.

[46]  R. Leapman,et al.  Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils , 2000 .

[47]  C. Rienstra,et al.  NH-NH vector correlation in peptides by solid-state NMR. , 2000, Journal of magnetic resonance.

[48]  M. Levitt,et al.  Determination of molecular geometry by high-order multiple-quantum evolution in solid-state NMR. , 2000, Journal of magnetic resonance.

[49]  F E Cohen,et al.  A synthetic peptide initiates Gerstmann-Sträussler-Scheinker (GSS) disease in transgenic mice. , 2000, Journal of molecular biology.

[50]  Fran Maher,et al.  The Hydrophobic Core Sequence Modulates the Neurotoxic and Secondary Structure Properties of the Prion Peptide 106‐126 , 1999, Journal of neurochemistry.

[51]  J. R. Long,et al.  Determination of Torsion Angles in Proteins and Peptides Using Solid State NMR , 1999 .

[52]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[53]  Katsuhiko Ariga,et al.  Regulation of β-Sheet Structures within Amyloid-Like β-Sheet Assemblage from Tripeptide Derivatives , 1998 .

[54]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[55]  O. Antzutkin,et al.  Direct Determination of a Peptide Torsional Angle ψ by Double-Quantum Solid-State NMR , 1997 .

[56]  P E Wright,et al.  Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Griffin,et al.  Solid-state NMR measurement of Ψ in peptides: a NCCN 2Q-heteronuclear local field experiment , 1997 .

[58]  K Wüthrich,et al.  NMR characterization of the full‐length recombinant murine prion protein, mPrP(23–231) , 1997, FEBS letters.

[59]  Bak,et al.  REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR , 1997, Journal of magnetic resonance.

[60]  K. Schmidt-Rohr Torsion Angle Determination in Solid 13C-Labeled Amino Acids and Peptides by Separated-Local-Field Double-Quantum NMR , 1996 .

[61]  D. Sandström,et al.  Direct determination of a molecular torsional angle by solid-state NMR , 1996 .

[62]  Y. Ishii,et al.  Relayed anisotropy correlation NMR: determination of dihedral angles in solids , 1996 .

[63]  Bernhard Schmidt,et al.  Role of microglia and host prion protein in neurotoxicity of a prion protein fragment , 1996, Nature.

[64]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[65]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[66]  Andrew E. Bennett,et al.  Heteronuclear decoupling in rotating solids , 1995 .

[67]  Robert C. Anderson,et al.  Conformation of [1-13C,15N]Acetyl-L-carnitine. Rotational-Echo, Double-Resonance Nuclear Magnetic Resonance Spectroscopy , 1995 .

[68]  B. Meier,et al.  Adiabatic passage Hartmann-Hahn cross polarization in NMR under magic angle sample spinning , 1995 .

[69]  P. Kollman,et al.  A second generation force field for the simulation of proteins , 1995 .

[70]  R. Hodges,et al.  1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects , 1995, Journal of biomolecular NMR.

[71]  F. Cohen,et al.  Proposed three-dimensional structure for the cellular prion protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  G. Bodenhausen,et al.  NMR cross polarization by adiabatic passage through the Hartmann-Hahn condition (APHH) , 1994 .

[73]  B. Meier,et al.  A COMBINED STRUCTURAL STUDY USING NMR CHEMICAL-SCHIELDING-TENSOR CORRELATION AND NEUTRON DIFFRACTION IN POLYCRYSTALLINE METHANOL , 1994 .

[74]  B. Ghetti,et al.  Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[75]  G. Forloni,et al.  Neurotoxicity of a prion protein fragment , 1993, Nature.

[76]  D. Selkoe,et al.  Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid beta-protein. , 1992, Biochemistry.

[77]  R. Tycko,et al.  Nuclear magnetic resonance crystallography : molecular orientational ordering in three forms of solid methanol , 1991 .

[78]  P. Stewart,et al.  Structures of two model peptides: N-acetyl-d,l-valine and N-acetyl-l-valyl-l-leucine , 1990 .

[79]  H. Scheraga,et al.  Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[80]  P. M. Henrichs,et al.  Use of carbon–carbon nuclear spin diffusion for the study of the miscibility of polymer blends , 1985 .

[81]  P. M. Henrichs,et al.  Carbon-13 spin diffusion in the determination of intermolecular structure in solids , 1984 .

[82]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[83]  S. Prusiner Novel proteinaceous infectious particles cause scrapie. , 1982, Science.

[84]  T. Koetzle,et al.  Precision neutron diffraction structure determination of protein and nucleic acid components. I. The crystal and molecular structure of the amino acid L-alanine. , 1972, Journal of the American Chemical Society.

[85]  Walter I. Goldburg,et al.  Nuclear-Magnetic-Resonance Line Narrowing by a Rotating rf Field , 1965 .

[86]  Walter I. Goldburg,et al.  NUCLEAR MAGNETIC RESONANCE LINE NARROWING BY A ROTATING rf FIELD , 1963 .

[87]  David Eisenberg,et al.  Atomic structures of amyloid cross-beta spines reveal varied steric zippers. , 2007, Nature.

[88]  Robert A. Grothe,et al.  Structure of the cross-beta spine of amyloid-like fibrils. , 2005, Nature.

[89]  Y. Ishii,et al.  Capturing intermediate structures of Alzheimer's beta-amyloid, Abeta(1-40), by solid-state NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[90]  S. Decatur,et al.  Intersheet rearrangement of polypeptides during nucleation of {beta}-sheet aggregates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[91]  R. Leapman,et al.  Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. , 2005, Science.

[92]  J. J. Balbach,et al.  Increasing the amphiphilicity of an amyloidogenic peptide changes the beta-sheet structure in the fibrils from antiparallel to parallel. , 2004, Biophysical journal.

[93]  R. Leapman,et al.  Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. , 2004, Journal of molecular biology.

[94]  R. Griffin,et al.  NMR determination of the torsion angle psi in alpha-helical peptides and proteins: the HCCN dipolar correlation experiment. , 2002, Journal of magnetic resonance.

[95]  O. Antzutkin,et al.  Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance. , 2002, Biophysical journal.

[96]  R. Leapman,et al.  A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  A. Naito,et al.  Conformational transitions and fibrillation mechanism of human calcitonin as studied by high‐resolution solid‐state 13C NMR , 2000, Protein science : a publication of the Protein Society.

[98]  D. Sandström,et al.  Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR , 2000, Journal of biomolecular NMR.

[99]  R. Leapman,et al.  Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[100]  F. Cohen,et al.  Scrapie prions: a three-dimensional model of an infectious fragment. , 1995, Folding & design.

[101]  B D Sykes,et al.  1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects , 1995, Journal of biomolecular NMR.

[102]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .